python并发编程多进程 互斥锁原理解析

yipeiwu_com6年前Python基础

运行多进程 每个子进程的内存空间是互相隔离的 进程之间数据不能共享的

互斥锁

但是进程之间都是运行在一个操作系统上,进程之间数据不共享,但是共享同一套文件系统,所以访问同一个文件,或同一个打印终端,

是可以的,而共享带来的是竞争,竞争带来的结果就是错乱

#并发运行,效率高,但竞争同一打印终端,带来了打印错乱
from multiprocessing import Process
import time
def task(name):
  print("%s 1" % name)
  time.sleep(1)
  print("%s 2" % name)
  time.sleep(1)
  print("%s 3" % name)
if __name__ == '__main__':
  for i in range(3):
    p = Process(target=task, args=("子进程%s" % i,))
    p.start()
'''
子进程2 1
子进程0 1
子进程1 1
子进程2 2
子进程1 2
子进程0 2
子进程2 3
子进程1 3
子进程0 3
'''

如何控制,就是加锁处理。而互斥锁的意思就是互相排斥,如果把多个进程比喻为多个人,

互斥锁的工作原理就是多个人都要去争抢同一个资源:卫生间,一个人抢到卫生间后上一把锁,其他人都要等着,等到这个完成任务后释放锁,其他人才有可能有一个抢到......

所以互斥锁的原理,就是把并发改成串行,降低了效率,但保证了数据安全,不错乱

加了互斥锁就没有并发效果了 加上锁只有一个可以运行 互斥锁会把并发变成串行 效率变低了

解决:

导入模块 Lock

现在程序启动 所有进程首先会去抢锁 只有抢到锁的才能运行

等这个进程运行完了解锁后 再到其他进程继续抢锁

from multiprocessing import Process, Lock
import time
def task(name, mutex):
  # 加锁
  mutex.acquire()
  print("%s 1" % name)
  time.sleep(1)
  print("%s 2" % name)
  time.sleep(1)
  print("%s 3" % name)
  # 把锁拆了
  mutex.release()
if __name__ == '__main__':
  # 建一个对象实例
  mutex = Lock()
  for i in range(3):
    # 把锁传给子进程 让所有子进程用同一把锁
    p = Process(target=task, args=("子进程%s" % i, mutex))
    p.start()
'''
现在程序启动 所有进程首先会去抢锁 只有抢到锁的才能运行
等这个进程运行完了解锁后 再到其他进程继续抢锁
'''
'''
子进程0 1
子进程0 2
子进程0 3
子进程1 1
子进程1 2
子进程1 3
子进程2 1
子进程2 2
子进程2 3
'''

牺牲了效率,保证数据不错乱

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用 Python 实现微信公众号粉丝迁移流程

近日,因公司业务需要,需将原两个公众号合并为一个,即要将其中一个公众号(主要是粉丝)迁移到另一个公众号。按微信规范,同一用户在不同公众号内的 openid 是不同的,我们的业务系统不例外...

python 求1-100之间的奇数或者偶数之和的实例

如下所示: i=0 sum1=0 sum2=0 while i<=100: if i%2==0: sum1+=i else: sum2+=i i+=...

如何分离django中的媒体、静态文件和网页

django项目中,占很大体积的是静态文件,媒体文件还有html代码,那我们该如何把它们分离出来以方便我们和服务器去管理和使用它们。 static 文件 static ,顾名思义就是静态...

详解PyTorch中Tensor的高阶操作

详解PyTorch中Tensor的高阶操作

条件选取:torch.where(condition, x, y) → Tensor 返回从 x 或 y 中选择元素的张量,取决于 condition 操作定义: 举个例子:...

3个用于数据科学的顶级Python库

3个用于数据科学的顶级Python库

Python有许多吸引力,如效率,代码可读性和速度,使其成为数据科学爱好者的首选编程语言。Python通常是希望升级其应用程序功能的数据科学家和机器学习专家的首选。 由于其广泛的用途,P...