余弦相似性计算及python代码实现过程解析

yipeiwu_com5年前Python基础

A:西米喜欢健身

B:超超不爱健身,喜欢打游戏

step1:分词

A:西米/喜欢/健身

B:超超/不/喜欢/健身,喜欢/打/游戏

step2:列出两个句子的并集

西米/喜欢/健身/超超/不/打/游戏

step3:计算词频向量

A:[1,1,1,0,0,0,0]

B:[0,1,1,1,1,1,1]

step4:计算余弦值

余弦值越大,证明夹角越小,两个向量越相似。

step5:python代码实现

import jieba
import jieba.analyse
def words2vec(words1=None, words2=None):
 v1 = []
 v2 = []
 tag1 = jieba.analyse.extract_tags(words1, withWeight=True)
 tag2 = jieba.analyse.extract_tags(words2, withWeight=True)
 tag_dict1 = {i[0]: i[1] for i in tag1}
 tag_dict2 = {i[0]: i[1] for i in tag2}
 merged_tag = set(tag_dict1.keys()) | set(tag_dict2.keys())
 for i in merged_tag:
  if i in tag_dict1:
   v1.append(tag_dict1[i])
  else:
   v1.append(0)
  if i in tag_dict2:
   v2.append(tag_dict2[i])
  else:
   v2.append(0)
 return v1, v2
def cosine_similarity(vector1, vector2):
 dot_product = 0.0
 normA = 0.0
 normB = 0.0
 for a, b in zip(vector1, vector2):
  dot_product += a * b
  normA += a ** 2
  normB += b ** 2
 if normA == 0.0 or normB == 0.0:
  return 0
 else:
  return round(dot_product / ((normA**0.5)*(normB**0.5)) * 100, 2)  
def cosine(str1, str2):
 vec1, vec2 = words2vec(str1, str2)
 return cosine_similarity(vec1, vec2)
print(cosine('阿克苏苹果', '阿克苏苹果'))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch中如何使用DataLoader对数据集进行批处理的方法

pytorch中如何使用DataLoader对数据集进行批处理的方法

最近搞了搞minist手写数据集的神经网络搭建,一个数据集里面很多个数据,不能一次喂入,所以需要分成一小块一小块喂入搭建好的网络。 pytorch中有很方便的dataloader函数来方...

python类的方法属性与方法属性的动态绑定代码详解

动态语言与静态语言有很多不同,最大的特性之一就是可以实现动态的对类和实例进行修改,在Python中,我们创建了一个类后可以对实例和类绑定心的方法或者属性,实现动态绑定。 最近在学习pyt...

Python 中pandas.read_excel详细介绍

Python 中pandas.read_excel详细介绍 #coding:utf-8 import pandas as pd import numpy as np fileful...

Python抽象和自定义类定义与用法示例

本文实例讲述了Python抽象和自定义类定义与用法。分享给大家供大家参考,具体如下: 抽象方法 class Person(): def say(self): pass c...

Python程序设计入门(3)数组的使用

1、Python的数组可分为三种类型: (1) list 普通的链表,初始化后可以通过特定方法动态增加元素。定义方式:arr = [元素] (2) Tuple 固定的数组,一旦定义后,其...