python 生成器和迭代器的原理解析

yipeiwu_com5年前Python基础

一、生成器简介

在python中,生成器是根据某种算法边循环边计算的一种机制。主要就是用于操作大量数据的时候,一般我们会将操作的数据读入内存中处理,可以计算机的内存是比较宝贵的资源,我认为的当要处理的数据超过内存四分之一的大小时就应该使用生成器。

二、生成器有什么特点?

1.和传统的容器相比,生成器更节省内存。

2.延迟计算,在我们需要结果时就调用一下生成器的next()方法即可。

3.可迭代,你可以像遍历list一样,遍历生成器

三、如何创建生成器?

在python中有两种方式创建生成器:生成器表达式 和 生成器函数。

生成器表达式

gen1 = (x for x in range(10))

生成器函数

生成式函数和普通函数只有一个区别,普通函数使用return返回结果,而生成器函数使用yield返回结果。
yield的特点在于,它并不是结束函数,而是在返回结果后将函数处于一种挂起状态,等待再次next函数的调用,然后从上次挂起的地方(yield)继续执行。

def gen():
a = 1
yield a
b = 2
yield b
c = 3
yield c

g = gen()

print(next(g))
print(next(g))
print(next(g))
print(next(g))

四、迭代器简介

迭代器是一个包含有限数量值的对象。

迭代器是一个可以被迭代的对象,可以遍历迭代器中的所有值。

从技术上讲,在Python中,迭代器是实现迭代器协议的对象,该协议由方法__iter__()和__next__()组成。

可迭代的数据类型

列表、元组、字典和集合都是可迭代的对象,可以从其中获得迭代器。

所有这些对象都可用iter()方法获取迭代器:

示例

从元组中获取一个迭代器,遍历并打印每个值:

mytuple = ("飞机", "汽车", "高铁")
myit = iter(mytuple)

print(next(myit))
print(next(myit))
print(next(myit))

五、创建迭代器

一个对象要创建迭代器,变成可迭代的,必须实现方法:__iter__()和__next__()。

__iter__()方法必须始终返回迭代器对象本身。

__next__()方法必须返回序列中的下一项。

示例

创建一个返回数字的迭代器,从1开始,每个序列项递增1(返回1、2、3、4、5等):

class MyNumbers:
def __iter__(self):
self.a = 1
return self

def __next__(self):
x = self.a
self.a += 1
return x

myclass = MyNumbers()
myiter = iter(myclass)

print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))
print(next(myiter))

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现2014火车票查询代码分享

代码基于Python3.3.3,PyQt5.1.1 复制代码 代码如下:# -*- coding: utf-8 -*-# Python 3.3.3# PyQt 5.1.1import s...

浅析Python数字类型和字符串类型的内置方法

一、数字类型内置方法 1.1 整型的内置方法 作用 描述年龄、号码、id号 定义方式 x = 10 x = int('10') x = int(10.1) x = int('10...

Python作用域用法实例详解

本文实例分析了Python作用域用法。分享给大家供大家参考,具体如下: 每一个编程语言都有变量的作用域的概念,Python也不例外,以下是Python作用域的代码演示: def sc...

Python安装Numpy和matplotlib的方法(推荐)

Python安装Numpy和matplotlib的方法(推荐) 注意: 下载的库名中cp27代表python2.7,其它同理。 在shell中输入import pip; print(p...

python机器学习之贝叶斯分类

python机器学习之贝叶斯分类

一、贝叶斯分类介绍 贝叶斯分类器是一个统计分类器。它们能够预测类别所属的概率,如:一个数据对象属于某个类别的概率。贝叶斯分类器是基于贝叶斯定理而构造出来的。对分类方法进行比较的有关研究结...