Pandas数据离散化原理及实例解析

yipeiwu_com5年前Python基础

这篇文章主要介绍了Pandas数据离散化原理及实例解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下

为什么要离散化

  • 连续属性离散化的目的是为了简化数据结构,数据离散化技术可以用来减少给定连续属性值的个数。离散化方法经常作为数据挖掘的工具
  • 扔掉一些信息,可以让模型更健壮,泛化能力更强

什么是数据的离散化

连续属性的离散化就是在连续属性的值域上,将值域划分为若干个离散的区间,最后用不同的符号或整数 值代表落在每个子区间中的属性值

分箱

案例

1.先读取股票的数据,筛选出p_change数据

data = pd.read_csv("./data/stock_day.csv")
p_change= data['p_change']

2.将股票涨跌幅数据进行分组

使用的工具:

  • pd.qcut(data, bins)——等深分箱:
    • 对数据进行分组将数据分组 一般会与value_counts搭配使用,统计每组的个数
  • series.value_counts():统计分组次数
# 自行分组
qcut = pd.qcut(p_change, 10)
# 计算分到每个组数据个数
qcut.value_counts()

自定义区间分组:

  • pd.cut(data, bins)——等宽分箱:
    • bins是整数—等宽
    • bins是列表--自定义分箱
# 自己指定分组区间
bins = [-100, -7, -5, -3, 0, 3, 5, 7, 100]
p_counts = pd.cut(p_change, bins)

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python Series从0开始索引的方法

如下所示: b.reset_index(drop=True) reset_index代表重新设置索引,drop=True为删除原索引。 以上这篇Python Series从0开始索...

Python使用plotly绘制数据图表的方法

Python使用plotly绘制数据图表的方法

导语:使用 python-plotly 模块来进行压测数据的绘制,并且生成静态 html 页面结果展示。 不少小伙伴在开发过程中都有对模块进行压测的经历,压测结束后大家往往喜欢使用Exc...

Python中动态创建类实例的方法

简介 在Java中我们可以通过反射来根据类名创建类实例,那么在Python我们怎么实现类似功能呢? 其实在Python有一个builtin函数import,我们可以使用这个函数来在运行时...

python 删除大文件中的某一行(最有效率的方法)

用 python 处理一个文本时,想要删除其中中某一行,常规的思路是先把文件读入内存,在内存中修改后再写入源文件。 但如果要处理一个很大的文本,比如GB级别的文本时,这种方法不仅需要占用...

Python人工智能之路 jieba gensim 最好别分家之最简单的相似度实现

简单的问答已经实现了,那么问题也跟着出现了,我不能确定问题一定是"你叫什么名字",也有可能是"你是谁","你叫啥"之类的,这就引出了人工智能中的另一项技术: 自然语言处理(NLP) :...