pytorch如何冻结某层参数的实现

yipeiwu_com5年前Python基础

在迁移学习finetune时我们通常需要冻结前几层的参数不参与训练,在Pytorch中的实现如下:

class Model(nn.Module):
 def __init__(self):
  super(Transfer_model, self).__init__()
  self.linear1 = nn.Linear(20, 50)
  self.linear2 = nn.Linear(50, 20)
  self.linear3 = nn.Linear(20, 2)

 def forward(self, x):
 pass

假如我们想要冻结linear1层,需要做如下操作:

model = Model()
# 这里是一般情况,共享层往往不止一层,所以做一个for循环
for para in model.linear1.parameters():
 para.requires_grad = False
# 假如真的只有一层也可以这样操作:
# model.linear1.weight.requires_grad = False

 最后我们需要将需要优化的参数传入优化器,不需要传入的参数过滤掉,所以要用到filter()函数。

optimizer = optim.Adam(filter(lambda p: p.requires_grad, model.parameters()), lr=0.1)

其它的博客中都没有讲解filter()函数的作用,在这里我简单讲一下有助于更好的理解。

filter(function, iterable)

  • function: 判断函数
  • iterable: 可迭代对象

filter() 函数用于过滤序列,过滤掉不符合条件的元素,返回一个迭代器对象,如果要转换为列表,可以使用 list() 来转换。

该接收两个参数,第一个为函数,第二个为序列,序列的每个元素作为参数传递给函数进行判,然后返回 True 或 False,最后将返回 True 的元素放到新列表中。

filter()函数将requires_grad = True的参数传入优化器进行反向传播,requires_grad = False的则被过滤掉。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pytorch中的卷积和池化计算方式详解

pytorch中的卷积和池化计算方式详解

TensorFlow里面的padding只有两个选项也就是valid和same pytorch里面的padding么有这两个选项,它是数字0,1,2,3等等,默认是0 所以输出的h和w的...

Python合并多个装饰器小技巧

django程序,需要写很多api,每个函数都需要几个装饰器,例如 复制代码 代码如下: @csrf_exempt  @require_POST  def&nbs...

python 列表降维的实例讲解

列表降维(python:3.x) 之前遇到需要使用列表降维的情况, 如: 原列表 : [[12,34],[57,86,1],[43,22,7],[1,[2,3]],6] 转化为 : [1...

python开发之基于thread线程搜索本地文件的方法

python开发之基于thread线程搜索本地文件的方法

本文实例讲述了python开发之基于thread线程搜索本地文件的方法。分享给大家供大家参考,具体如下: 先来看看运行效果图: 利用多个线程处理搜索的问题,我们可以发现他很快.......

Python实现配置文件备份的方法

本文实例讲述了Python实现配置文件备份的方法。分享给大家供大家参考。具体如下: 这里平台为Linux: #!/usr/bin/python #Author:gdlinjianyi...