tensorflow实现加载mnist数据集

yipeiwu_com6年前Python基础

mnist作为最基础的图片数据集,在以后的cnn,rnn任务中都会用到

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
from tensorflow.examples.tutorials.mnist import input_data

#数据集存放地址,采用0-1编码
mnist = input_data.read_data_sets('F:/mnist/data/',one_hot = True)
print(mnist.train.num_examples)
print(mnist.test.num_examples)

trainimg = mnist.train.images
trainlabel = mnist.train.labels
testimg = mnist.test.images
testlabel = mnist.test.labels

#打印相关信息
print(type(trainimg))
print(trainimg.shape,)
print(trainlabel.shape,)
print(testimg.shape,)
print(testlabel.shape,)

nsample = 5
randidx = np.random.randint(trainimg.shape[0],size = nsample)

#输出几张数字的图
for i in randidx:
  curr_img = np.reshape(trainimg[i,:],(28,28))
  curr_label = np.argmax(trainlabel[i,:])
  plt.matshow(curr_img,cmap=plt.get_cmap('gray'))
  plt.title(""+str(i)+"th Training Data"+"label is"+str(curr_label))
  print(""+str(i)+"th Training Data"+"label is"+str(curr_label))
  plt.show()

程序运行结果如下:

Extracting F:/mnist/data/train-images-idx3-ubyte.gz
Extracting F:/mnist/data/train-labels-idx1-ubyte.gz
Extracting F:/mnist/data/t10k-images-idx3-ubyte.gz
Extracting F:/mnist/data/t10k-labels-idx1-ubyte.gz
55000
10000
<class 'numpy.ndarray'>
(55000, 784)
(55000, 10)
(10000, 784)
(10000, 10)
52636th 

输出的图片如下:

Training Datalabel is9

下面还有四张其他的类似图片

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

简单了解Python中的几种函数

几个特殊的函数(待补充) python是支持多种范型的语言,可以进行所谓函数式编程,其突出体现在有这么几个函数: filter、map、reduce、lambda、yield lamb...

Sanic框架流式传输操作示例

本文实例讲述了Sanic框架流式传输操作。分享给大家供大家参考,具体如下: 简介 Sanic是一个类似Flask的Python 3.5+ Web服务器,它的写入速度非常快。除了Flask...

python去除拼音声调字母,替换为字母的方法

第一种方法 import sys import unicodedata s = "Lǐ Zhōu Wú" remap = { # ord返回ascii值 ord('\t'): '...

基于Python开发chrome插件的方法分析

基于Python开发chrome插件的方法分析

本文实例讲述了基于Python开发chrome插件的方法。分享给大家供大家参考,具体如下: 谷歌Chrome插件是使用HTML、JavaScript和CSS编写的。如果你之前从来没有写过...

使用Python的Dataframe取两列时间值相差一年的所有行方法

在使用Python处理数据时,经常需要对数据筛选。 这是在对时间筛选时,判断两列时间是否相差一年,如果是,则返回符合条件的所有列。 data原始数据: data[map(lambda...