计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

yipeiwu_com6年前Python基础

pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:

if 'coco' in args.dataset:
  mean_vals = [0.471, 0.448, 0.408]
  std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
  mean_vals = [0.485, 0.456, 0.406]
  std_vals = [0.229, 0.224, 0.225]

计算自己数据集图像像素的均值方差:

import numpy as np
import cv2
import random
 
# calculate means and std
train_txt_path = './train_val_list.txt'
 
CNum = 10000   # 挑选多少图片进行计算
 
img_h, img_w = 32, 32
imgs = np.zeros([img_w, img_h, 3, 1])
means, stdevs = [], []
 
with open(train_txt_path, 'r') as f:
  lines = f.readlines()
  random.shuffle(lines)  # shuffle , 随机挑选图片
 
  for i in tqdm_notebook(range(CNum)):
    img_path = os.path.join('./train', lines[i].rstrip().split()[0])
 
    img = cv2.imread(img_path)
    img = cv2.resize(img, (img_h, img_w))
    img = img[:, :, :, np.newaxis]
    
    imgs = np.concatenate((imgs, img), axis=3)
#     print(i)
 
imgs = imgs.astype(np.float32)/255.
 
 
for i in tqdm_notebook(range(3)):
  pixels = imgs[:,:,i,:].ravel() # 拉成一行
  means.append(np.mean(pixels))
  stdevs.append(np.std(pixels))
 
# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()
 
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))

以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现微信接口(itchat)详细介绍

前言 itchat是一个开源的微信个人号接口,使用python调用微信从未如此简单。使用不到三十行的代码,你就可以完成一个能够处理所有信息的微信机器人。当然,该api的使用远不止一个机器...

python安装gdal的两种方法

1.不用手动下载文件,直接执行以下命令即可 conda install gdal 2.首先,下载gdal的whl文件  链接, 官网下载比较慢,GDAL-2.2.4-cp27-...

Python 文件管理实例详解

本文实例讲述了Python 文件管理的方法。分享给大家供大家参考,具体如下: 一、Python中的文件管理 文件管理是很多应用程序的基本功能和重要组成部分。Python可以使文件管理极其...

对python中类的继承与方法重写介绍

对python中类的继承与方法重写介绍

1.单继承 父类也叫基类 子类也叫派生类 如下所示,继承的关系: 继承的书写格式: class 子类(父类): 方法 实例: class Animal:...

python多重继承实例

本文实例讲述了python多重继承用法,分享给大家供大家参考。具体实现方法如下: 1.mro.py文件如下: #!/usr/bin/python # Filename:mro.py...