OpenCV python sklearn随机超参数搜索的实现

yipeiwu_com5年前Python基础

本文介绍了OpenCV python sklearn随机超参数搜索的实现,分享给大家,具体如下:

"""
房价预测数据集 使用sklearn执行超参数搜索
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import tensorflow as tf
from tensorflow_core.python.keras.api._v2 import keras # 不能使用 python
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from scipy.stats import reciprocal

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

# 0.打印导入模块的版本
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, sklearn, pd, tf, keras:
  print("%s version:%s" % (module.__name__, module.__version__))


# 显示学习曲线
def plot_learning_curves(his):
  pd.DataFrame(his.history).plot(figsize=(8, 5))
  plt.grid(True)
  plt.gca().set_ylim(0, 1)
  plt.show()


# 1.加载数据集 california 房价
housing = fetch_california_housing()

print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)

# 2.拆分数据集 训练集 验证集 测试集
x_train_all, x_test, y_train_all, y_test = train_test_split(
  housing.data, housing.target, random_state=7)
x_train, x_valid, y_train, y_valid = train_test_split(
  x_train_all, y_train_all, random_state=11)

print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)

# 3.数据集归一化
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.fit_transform(x_valid)
x_test_scaled = scaler.fit_transform(x_test)


# 创建keras模型
def build_model(hidden_layers=1, # 中间层的参数
        layer_size=30,
        learning_rate=3e-3):
  # 创建网络层
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(layer_size, activation="relu",
                 input_shape=x_train.shape[1:]))
 # 隐藏层设置
  for _ in range(hidden_layers - 1):
    model.add(keras.layers.Dense(layer_size,
                   activation="relu"))
  model.add(keras.layers.Dense(1))

  # 优化器学习率
  optimizer = keras.optimizers.SGD(lr=learning_rate)
  model.compile(loss="mse", optimizer=optimizer)

  return model


def main():
  # RandomizedSearchCV

  # 1.转化为sklearn的model
  sk_learn_model = keras.wrappers.scikit_learn.KerasRegressor(build_model)

  callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)]

  history = sk_learn_model.fit(x_train_scaled, y_train, epochs=100,
                 validation_data=(x_valid_scaled, y_valid),
                 callbacks=callbacks)
  # 2.定义超参数集合
  # f(x) = 1/(x*log(b/a)) a <= x <= b
  param_distribution = {
    "hidden_layers": [1, 2, 3, 4],
    "layer_size": np.arange(1, 100),
    "learning_rate": reciprocal(1e-4, 1e-2),
  }

  # 3.执行超搜索参数
  # cross_validation:训练集分成n份, n-1训练, 最后一份验证.
  random_search_cv = RandomizedSearchCV(sk_learn_model, param_distribution,
                     n_iter=10,
                     cv=3,
                     n_jobs=1)
  random_search_cv.fit(x_train_scaled, y_train, epochs=100,
             validation_data=(x_valid_scaled, y_valid),
             callbacks=callbacks)
  # 4.显示超参数
  print(random_search_cv.best_params_)
  print(random_search_cv.best_score_)
  print(random_search_cv.best_estimator_)

  model = random_search_cv.best_estimator_.model
  print(model.evaluate(x_test_scaled, y_test))

  # 5.打印模型训练过程
  plot_learning_curves(history)


if __name__ == '__main__':
  main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3 图片referer防盗链的实现方法

本篇文章主要破解referer防盗链技术 referer防盗链技术: referer防盗链技术是服务器通过检查客户端提起的请求包内的referer字段来阻止图片下载的,如果refere...

python去掉行尾的换行符方法

如下所示: mystring.strip().replace(' ', '').replace('\n', '').replace('\t', '').replace('\r', '')...

使用selenium模拟登录解决滑块验证问题的实现

使用selenium模拟登录解决滑块验证问题的实现

本次主要是使用selenium模拟登录网页端的TX新闻,本来最开始是模拟请求的,但是某一天突然发现,部分账号需要经过滑块验证才能正常登录,如果还是模拟请求,需要的参数太多了,找的心累。不...

基于Python中的yield表达式介绍

基于Python中的yield表达式介绍

python生成器 python中生成器是迭代器的一种,使用yield返回函数值。每次调用yield会暂停,而可以使用next()函数和send()函数可以恢复生成器。 这里可以参考Py...

Python查找最长不包含重复字符的子字符串算法示例

Python查找最长不包含重复字符的子字符串算法示例

本文实例讲述了Python查找最长不包含重复字符的子字符串算法。分享给大家供大家参考,具体如下: 题目描述 请从字符串中找出一个最长的不包含重复字符的子字符串,计算该最长子字符串的长度。...