OpenCV python sklearn随机超参数搜索的实现

yipeiwu_com6年前Python基础

本文介绍了OpenCV python sklearn随机超参数搜索的实现,分享给大家,具体如下:

"""
房价预测数据集 使用sklearn执行超参数搜索
"""
import matplotlib as mpl
import matplotlib.pyplot as plt
import numpy as np
import sklearn
import pandas as pd
import os
import sys
import tensorflow as tf
from tensorflow_core.python.keras.api._v2 import keras # 不能使用 python
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import fetch_california_housing
from sklearn.model_selection import train_test_split, RandomizedSearchCV
from scipy.stats import reciprocal

os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
assert tf.__version__.startswith('2.')

# 0.打印导入模块的版本
print(tf.__version__)
print(sys.version_info)
for module in mpl, np, sklearn, pd, tf, keras:
  print("%s version:%s" % (module.__name__, module.__version__))


# 显示学习曲线
def plot_learning_curves(his):
  pd.DataFrame(his.history).plot(figsize=(8, 5))
  plt.grid(True)
  plt.gca().set_ylim(0, 1)
  plt.show()


# 1.加载数据集 california 房价
housing = fetch_california_housing()

print(housing.DESCR)
print(housing.data.shape)
print(housing.target.shape)

# 2.拆分数据集 训练集 验证集 测试集
x_train_all, x_test, y_train_all, y_test = train_test_split(
  housing.data, housing.target, random_state=7)
x_train, x_valid, y_train, y_valid = train_test_split(
  x_train_all, y_train_all, random_state=11)

print(x_train.shape, y_train.shape)
print(x_valid.shape, y_valid.shape)
print(x_test.shape, y_test.shape)

# 3.数据集归一化
scaler = StandardScaler()
x_train_scaled = scaler.fit_transform(x_train)
x_valid_scaled = scaler.fit_transform(x_valid)
x_test_scaled = scaler.fit_transform(x_test)


# 创建keras模型
def build_model(hidden_layers=1, # 中间层的参数
        layer_size=30,
        learning_rate=3e-3):
  # 创建网络层
  model = keras.models.Sequential()
  model.add(keras.layers.Dense(layer_size, activation="relu",
                 input_shape=x_train.shape[1:]))
 # 隐藏层设置
  for _ in range(hidden_layers - 1):
    model.add(keras.layers.Dense(layer_size,
                   activation="relu"))
  model.add(keras.layers.Dense(1))

  # 优化器学习率
  optimizer = keras.optimizers.SGD(lr=learning_rate)
  model.compile(loss="mse", optimizer=optimizer)

  return model


def main():
  # RandomizedSearchCV

  # 1.转化为sklearn的model
  sk_learn_model = keras.wrappers.scikit_learn.KerasRegressor(build_model)

  callbacks = [keras.callbacks.EarlyStopping(patience=5, min_delta=1e-2)]

  history = sk_learn_model.fit(x_train_scaled, y_train, epochs=100,
                 validation_data=(x_valid_scaled, y_valid),
                 callbacks=callbacks)
  # 2.定义超参数集合
  # f(x) = 1/(x*log(b/a)) a <= x <= b
  param_distribution = {
    "hidden_layers": [1, 2, 3, 4],
    "layer_size": np.arange(1, 100),
    "learning_rate": reciprocal(1e-4, 1e-2),
  }

  # 3.执行超搜索参数
  # cross_validation:训练集分成n份, n-1训练, 最后一份验证.
  random_search_cv = RandomizedSearchCV(sk_learn_model, param_distribution,
                     n_iter=10,
                     cv=3,
                     n_jobs=1)
  random_search_cv.fit(x_train_scaled, y_train, epochs=100,
             validation_data=(x_valid_scaled, y_valid),
             callbacks=callbacks)
  # 4.显示超参数
  print(random_search_cv.best_params_)
  print(random_search_cv.best_score_)
  print(random_search_cv.best_estimator_)

  model = random_search_cv.best_estimator_.model
  print(model.evaluate(x_test_scaled, y_test))

  # 5.打印模型训练过程
  plot_learning_curves(history)


if __name__ == '__main__':
  main()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现2014火车票查询代码分享

代码基于Python3.3.3,PyQt5.1.1 复制代码 代码如下:# -*- coding: utf-8 -*-# Python 3.3.3# PyQt 5.1.1import s...

python根据时间生成mongodb的ObjectId的方法

本文实例讲述了python根据时间生成mongodb的ObjectId的方法。分享给大家供大家参考。具体分析如下: mongodb的_id为ObjectId类型,ObjectId内是包含...

Python面向对象封装操作案例详解 II

Python面向对象封装操作案例详解 II

本文实例讲述了Python面向对象封装操作。分享给大家供大家参考,具体如下: 目标 士兵突击案例 身份运算符 封装 封装 是面向对象编程的一大特点 面向对象编程的 第一步 —— 将 属性...

浅谈python 线程池threadpool之实现

首先介绍一下自己使用到的名词: 工作线程(worker):创建线程池时,按照指定的线程数量,创建工作线程,等待从任务队列中get任务; 任务(requests):即工作线程处理的任务,任...

Python中__name__的使用实例

1. 如果模块是被导入,__name__的值为模块名字 2. 如果模块是被直接执行,__name__的值为'__main__' Py1.py 复制代码 代码如下: #!/usr/bin/...