PyTorch 随机数生成占用 CPU 过高的解决方法

yipeiwu_com6年前Python基础

PyTorch 随机数生成占用 CPU 过高的问题

今天在使用 pytorch 的过程中,发现 CPU 占用率过高。经过检查,发现是因为先在 CPU 中生成了随机数,然后再调用.to(device)传到 GPU,这样导致效率变得很低,并且CPU 和 GPU 都被消耗。

查阅PyTorch文档后发现,torch.randn(shape, out)可以直接在GPU中生成随机数,只要shape是tensor.cuda.Tensor类型即可。这样,就可以避免在 CPU 中生成过大的矩阵,而 shape 变量是很小的。

因此,下面的代码就可以进行这种操作了。

noise = torch.cuda.FloatTensor(shape) if torch.cuda.is_available() else torch.FloatTensor(shape)
torch.randn(shape, out=noise)

以上这篇PyTorch 随机数生成占用 CPU 过高的解决方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python根据区号生成手机号码的方法

本文实例讲述了Python根据区号生成手机号码的方法。分享给大家供大家参考。具体实现方法如下: # _*_ coding:utf-8 _*_ #xiaohei.python.seo....

python中的字典操作及字典函数

字典 dict_fruit = {'apple':'苹果','banana':'香蕉','cherry':'樱桃','avocado':'牛油果','watermelon':'西瓜'...

python机器学习之决策树分类详解

python机器学习之决策树分类详解

决策树分类与上一篇博客k近邻分类的最大的区别就在于,k近邻是没有训练过程的,而决策树是通过对训练数据进行分析,从而构造决策树,通过决策树来对测试数据进行分类,同样是属于监督学习的范畴。决...

python编程嵌套函数实例代码

python,函数嵌套,到底是个什么东东? 很少有人用,但是,有时确实会用: def multiplier(factor): def multiplyByFactor(numb...

python 列表降维的实例讲解

列表降维(python:3.x) 之前遇到需要使用列表降维的情况, 如: 原列表 : [[12,34],[57,86,1],[43,22,7],[1,[2,3]],6] 转化为 : [1...