python计算二维矩形IOU实例

yipeiwu_com6年前Python基础

计算交并比:交的面积除以并的面积。

要求矩形框的长和宽应该平行于图片框。不然不能用这样的公式计算。

原理,从一维上来理解:两条红线的距离之和减去黑色线之间的距离就是相交的距离。两条红线之和很容易算,两条黑线之间的距离就是最小的起点到到最大的末点,最小的起点好算,最大的末点就是两点加上各自长度之后的最大值。这就算出了一维的情况,二维的情况一样,计算二次而已。

def iou(rect1,rect2):
 '''
 计算两个矩形的交并比
 :param rect1:第一个矩形框。表示为x,y,w,h,其中x,y表示矩形右上角的坐标
 :param rect2:第二个矩形框。
 :return:返回交并比,也就是交集比并集
 '''
 x1,y1,w1,h1=rect1
 x2,y2,w2,h2=rect2
 
 inter_w=(w1+w2)-(max(x1+w1,x2+w2)-min(x1,x2))
 inter_h=(h1+h2)-(max(y1+h1,y2+h2)-min(y1,y2))
 
 if inter_h<=0 or inter_w<=0:#代表相交区域面积为0
  return 0
 #往下进行应该inter 和 union都是正值
 inter=inter_w * inter_h
 
 union=w1*h1+w2*h2-inter
 return inter/union

以上这篇python计算二维矩形IOU实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python中for用来遍历range函数的方法

python中for用来遍历range函数的方法

栗子:计算斐波那契数列(任一个数都是前两个数之和的数字序列) Python2.7实现代码如下: <strong><span style="font-size:14p...

Python字典实现简单的三级菜单(实例讲解)

如下所示: data = { "北京":{ "昌平":{"沙河":["oldboy","test"],"天通苑":["链接地产","我爱我家"]}, "朝阳":{"望京":...

运用PyTorch动手搭建一个共享单车预测器

运用PyTorch动手搭建一个共享单车预测器

本文摘自 《深度学习原理与PyTorch实战》 我们将从预测某地的共享单车数量这个实际问题出发,带领读者走进神经网络的殿堂,运用PyTorch动手搭建一个共享单车预测器,在实战过程中掌握...

对Pytorch神经网络初始化kaiming分布详解

对Pytorch神经网络初始化kaiming分布详解

函数的增益值 torch.nn.init.calculate_gain(nonlinearity, param=None) 提供了对非线性函数增益值的计算。 增益值gain是一个...

Python字符串切片操作知识详解

一:取字符串中第几个字符 print "Hello"[0] 表示输出字符串中第一个字符 print "Hello"[-1] 表示输出字符串中最后一个字符 二:字符串分割 print...