Pytorch之finetune使用详解

yipeiwu_com5年前Python基础

finetune分为全局finetune和局部finetune。首先介绍一下局部finetune步骤:

1.固定参数

  for name, child in model.named_children():
    for param in child.parameters():
      param.requires_grad = False

后,只传入 需要反传的参数,否则会报错

filter(lambda param: param.requires_grad, model.parameters())

2.调低学习率,加快衰减

finetune是在预训练模型上进行微调,学习速率不能太大。

目前不清楚:学习速率降低的幅度可以更快一些。这样以来,在使用step的策略时,stepsize可以更小一些。

直接从原始数据训练的base_lr一般为0.01,微调要比0.01小,置为0.001

要比直接训练的小一些,直接训练的stepsize为100000,finetune的stepsize: 50000

3. 固定bn或取消dropout:

batchnorm会影响训练的效果,随着每个batch,追踪样本的均值和方差。对于固定的网络,bn应该使用全局的数值

def freeze_bn(self):
  for layer in self.modules():
    if isinstance(layer, nn.BatchNorm2d):
      layer.eval()

训练时,model.train()会修改模式,freeze_zn()应该在这里后面

4.过滤参数

训练时,对于优化器,应该只传入需要改变的参数,否则会报错

filter(lambda p: p.requires_grad, model.parameters())

以上这篇Pytorch之finetune使用详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现监控linux性能及进程消耗性能的方法

本文以实例形式实现了python监控linux性能以及进程消耗性能的方法,具体实现代码如下: # -*- coding: utf-8 -*- """ Created on Tue J...

详解Python二维数组与三维数组切片的方法

如果对象是二维数组,则切片应当是x[:]的形式,里面有一个冒号,冒号之前和之后分别表示对象的第0个维度和第1个维度; 如果对象是三维数组,则切片应当是x[::],里面有两个冒号,分割出...

python实现自动化报表功能(Oracle/plsql/Excel/多线程)

python实现自动化报表功能(Oracle/plsql/Excel/多线程)

日常会有很多固定报表需要手动更新,本文将利用python实现多线程运行oracle代码,并利用xlwings包和numpy包将结果写入到指定excel模版(不改变模版内容),并自动生成带...

通过C++学习Python

我会随便说,C++ 近年来开始"抄袭" Python 么?我只会说,我在用 C++ 来学习 Python. 不信?来跟着我学? 字面量 Python 早在 2.6 版本中就支持将二进制作...

使用python进行文本预处理和提取特征的实例

如下所示: <strong><span style="font-size:14px;">文本过滤</span></strong>...