python 测试实现方法

yipeiwu_com6年前Python基础
 1)doctest
使用doctest是一种类似于命令行尝试的方式,用法很简单,如下
复制代码 代码如下:

def f(n):
"""
>>> f(1)
1
>>> f(2)
2
"""
print(n)

if __name__ == '__main__':
import doctest
doctest.testmod()

应该来说是足够简单了,另外还有一种方式doctest.testfile(filename),就是把命令行的方式放在文件里进行测试。

2)unittest
unittest历史悠久,最早可以追溯到上世纪七八十年代了,C++,Java里也都有类似的实现,Python里的实现很简单。
unittest在python里主要的实现方式是TestCase,TestSuite。用法还是例子起步。
复制代码 代码如下:

from widget import Widget
import unittest
# 执行测试的类
class WidgetTestCase(unittest.TestCase):
def setUp(self):
self.widget = Widget()
def tearDown(self):
self.widget.dispose()
self.widget = None
def testSize(self):
self.assertEqual(self.widget.getSize(), (40, 40))
def testResize(self):
self.widget.resize(100, 100)
self.assertEqual(self.widget.getSize(), (100, 100))
# 测试
if __name__ == "__main__":
# 构造测试集
suite = unittest.TestSuite()
suite.addTest(WidgetTestCase("testSize"))
suite.addTest(WidgetTestCase("testResize"))

# 执行测试
runner = unittest.TextTestRunner()
runner.run(suite)

简单的说,1>构造TestCase(测试用例),其中的setup和teardown负责预处理和善后工作。2>构造测试集,添加用例3>执行测试需要说明的是测试方法,在Python中有N多测试函数,主要的有:
TestCase.assert_(expr[, msg])
TestCase.failUnless(expr[, msg])
TestCase.assertTrue(expr[, msg])
TestCase.assertEqual(first, second[, msg])
TestCase.failUnlessEqual(first, second[, msg])
TestCase.assertNotEqual(first, second[, msg])
TestCase.failIfEqual(first, second[, msg])
TestCase.assertAlmostEqual(first, second[, places[, msg]])
TestCase.failUnlessAlmostEqual(first, second[, places[, msg]])
TestCase.assertNotAlmostEqual(first, second[, places[, msg]])
TestCase.failIfAlmostEqual(first, second[, places[, msg]])
TestCase.assertRaises(exception, callable, ...)
TestCase.failUnlessRaises(exception, callable, ...)
TestCase.failIf(expr[, msg])
TestCase.assertFalse(expr[, msg])
TestCase.fail([msg])

相关文章

python用pandas数据加载、存储与文件格式的实例

数据加载、存储与文件格式 pandas提供了一些用于将表格型数据读取为DataFrame对象的函数。其中read_csv和read_talbe用得最多 pandas中的解析函数: 函数...

使用matplotlib画散点图的方法

如下所示: import matplotlib.pyplot as plt import numpy as np a = np.array([1,2,3,4]) b = np.arr...

python微信跳一跳系列之自动计算跳一跳距离

python微信跳一跳系列之自动计算跳一跳距离

到现在为止,我们通过前面几篇博文的描述和分析,已经可以自动实现棋子、棋盘位置的准确判断,计算一下两个中心点之间的距离,并绘制在图形上,效果如下。 效果 图中的棋子定位采用HSV颜色识别...

python获取Pandas列名的几种方法

 获取DataFrame虽然是一个比较简单的操作,但是有时候到手边就是写不出来,所以在这里总结记录一下: 1.链表推倒式 data = pd.read_csv('data/...

用TensorFlow实现lasso回归和岭回归算法的示例

用TensorFlow实现lasso回归和岭回归算法的示例

也有些正则方法可以限制回归算法输出结果中系数的影响,其中最常用的两种正则方法是lasso回归和岭回归。 lasso回归和岭回归算法跟常规线性回归算法极其相似,有一点不同的是,在公式中增加...