Python使用稀疏矩阵节省内存实例

yipeiwu_com5年前Python基础

推荐系统中经常需要处理类似user_id, item_id, rating这样的数据,其实就是数学里面的稀疏矩阵,scipy中提供了sparse模块来解决这个问题,但scipy.sparse有很多问题不太合用:

1、不能很好的同时支持data[i, ...]、data[..., j]、data[i, j]快速切片;
2、由于数据保存在内存中,不能很好的支持海量数据处理。

要支持data[i, ...]、data[..., j]的快速切片,需要i或者j的数据集中存储;同时,为了保存海量的数据,也需要把数据的一部分放在硬盘上,用内存做buffer。这里的解决方案比较简单,用一个类Dict的东西来存储数据,对于某个i(比如9527),它的数据保存在dict['i9527']里面,同样的,对于某个j(比如3306),它的全部数据保存在dict['j3306']里面,需要取出data[9527, ...]的时候,只要取出dict['i9527']即可,dict['i9527']原本是一个dict对象,储存某个j对应的值,为了节省内存空间,我们把这个dict以二进制字符串形式存储,直接上代码:

复制代码 代码如下:

'''
Sparse Matrix
'''
import struct
import numpy as np
import bsddb
from cStringIO import StringIO
 
class DictMatrix():
    def __init__(self, container = {}, dft = 0.0):
        self._data  = container
        self._dft   = dft
        self._nums  = 0
 
    def __setitem__(self, index, value):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
 
        ik = ('i%d' % i)
        # 为了节省内存,我们把j, value打包成字二进制字符串
        ib = struct.pack('if', j, value)
        jk = ('j%d' % j)
        jb = struct.pack('if', i, value)
 
        try:
            self._data[ik] += ib
        except:
            self._data[ik] = ib
        try:
            self._data[jk] += jb
        except:
            self._data[jk] = jb
        self._nums += 1
 
    def __getitem__(self, index):
        try:
            i, j = index
        except:
            raise IndexError('invalid index')
 
        if (isinstance(i, int)):
            ik = ('i%d' % i)
            if not self._data.has_key(ik): return self._dft
            ret = dict(np.fromstring(self._data[ik], dtype = 'i4,f4'))
            if (isinstance(j, int)): return ret.get(j, self._dft)
 
        if (isinstance(j, int)):
            jk = ('j%d' % j)
            if not self._data.has_key(jk): return self._dft
            ret = dict(np.fromstring(self._data[jk], dtype = 'i4,f4'))
 
        return ret
 
    def __len__(self):
        return self._nums
 
    def __iter__(

测试代码:

复制代码 代码如下:

import timeit
timeit.Timer('foo = __main__.data[9527, ...]', 'import __main__').timeit(number = 1000)

消耗1.4788秒,大概读取一条数据1.5ms。
采用类Dict来存储数据的另一个好处是你可以随便用内存Dict或者其他任何形式的DBM,甚至传说中的Tokyo Cabinet….

好了,码完收工。

相关文章

Pandas之groupby( )用法笔记小结

Pandas之groupby( )用法笔记小结

groupby官方解释 DataFrame.groupby(by=None, axis=0, level=None, as_index=True, sort=True, group_...

Python3.4学习笔记之 idle 清屏扩展插件用法分析

本文实例讲述了Python3.4 idle 清屏扩展插件用法。分享给大家供大家参考,具体如下: python idle 清屏问题的解决,使用python idle都会遇到一个常见而又懊恼...

Python3内置模块之json编解码方法小结【推荐】

Python3中我们利用内置模块 json 解码和编码 JSON对象 ,JSON(JavaScript Object Notation)是指定 RFC 7159(废弃了RFC 4627)...

Python 闭包,函数分隔作用域,nonlocal声明非局部变量操作示例

本文实例讲述了Python 闭包,函数分隔作用域,nonlocal声明非局部变量操作。分享给大家供大家参考,具体如下: 实例对象也可以实现闭包的功能,不过实例对象消耗的资源(内存)比闭包...

对比Python中__getattr__和 __getattribute__获取属性的用法

相信大家觉得大多数时候我们并不太需要关注getattribute和getattr的一些细节(至少我自己吧:)), 一般情况下消费我们自定义的类的时候,我们对类的结构都了解,不会刻意偏离,...