跟老齐学Python之集合的关系

yipeiwu_com6年前Python基础

冻结的集合

前面一节讲述了集合的基本概念,注意,那里所涉及到的集合都是可原处修改的集合。还有一种集合,不能在原处修改。这种集合的创建方法是:

>>> f_set = frozenset("qiwsir")   #看这个名字就知道了frozen,冻结的set
>>> f_set
frozenset(['q', 'i', 's', 'r', 'w'])
>>> f_set.add("python")       #报错
Traceback (most recent call last):
 File "<stdin>", line 1, in <module>
AttributeError: 'frozenset' object has no attribute 'add'

>>> a_set = set("github")      #对比看一看,这是一个可以原处修改的set
>>> a_set
set(['b', 'g', 'i', 'h', 'u', 't'])
>>> a_set.add("python")
>>> a_set
set(['b', 'g', 'i', 'h', 'python', 'u', 't'])

集合运算

先复习一下中学数学(准确说是高中数学中的一点知识)中关于集合的一点知识,主要是唤起那痛苦而青涩美丽的回忆吧,至少对我是。

元素与集合的关系

元素是否属于某个集合。

>>> aset
set(['h', 'o', 'n', 'p', 't', 'y'])
>>> "a" in aset
False
>>> "h" in aset
True

集合与集合的纠结

假设两个集合A、B

A是否等于B,即两个集合的元素完全一样
在交互模式下实验

>>> a      
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a == b
False
>>> a != b
True

A是否是B的子集,或者反过来,B是否是A的超集。即A的元素也都是B的元素,但是B的元素比A的元素数量多。
实验一下

>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> c
set(['q', 'i'])
>>> c<a   #c是a的子集
True
>>> c.issubset(a)  #或者用这种方法,判断c是否是a的子集
True
>>> a.issuperset(c) #判断a是否是c的超集
True

>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a<b   #a不是b的子集
False
>>> a.issubset(b)  #或者这样做
False

A、B的并集,即A、B所有元素,如下图所示


>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a | b            #可以有两种方式,结果一样
set(['a', 'i', 'l', 'o', 'q', 's', 'r', 'w'])
>>> a.union(b)
set(['a', 'i', 'l', 'o', 'q', 's', 'r', 'w'])

A、B的交集,即A、B所公有的元素,如下图所示


>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a & b    #两种方式,等价
set(['q', 'i'])
>>> a.intersection(b)
set(['q', 'i'])

我在实验的时候,顺手敲了下面的代码,出现的结果如下,看官能解释一下吗?(思考题)

>>> a and b
set(['a', 'q', 'i', 'l', 'o'])

A相对B的差(补),即A相对B不同的部分元素,如下图所示


>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a - b
set(['s', 'r', 'w'])
>>> a.difference(b)
set(['s', 'r', 'w'])

-A、B的对称差集,如下图所示

>>> a
set(['q', 'i', 's', 'r', 'w'])
>>> b
set(['a', 'q', 'i', 'l', 'o'])
>>> a.symmetric_difference(b)
set(['a', 'l', 'o', 's', 'r', 'w'])

以上是集合的基本运算。在编程中,如果用到,可以用前面说的方法查找。不用死记硬背。

相关文章

处理Selenium3+python3定位鼠标悬停才显示的元素

先给大家介绍下Selenium3+python3--如何定位鼠标悬停才显示的元素 定位鼠标悬停才显示的元素,要引入新模块 # coding:utf-8 from selenium...

解决Django连接db遇到的问题

解决Django连接db遇到的问题

1、django.db.utils.ConnectionDoesNotExist: The connection default doesn't exist 解决:第一个连接的命名一定...

Python实现二分查找算法实例

本文实例讲述了Python实现二分查找算法的方法。分享给大家供大家参考。具体实现方法如下: #!/usr/bin/env python import sys def search2...

对Python获取屏幕截图的4种方法详解

Python获取电脑截图有多种方式,具体如下: PIL中的ImageGrab模块 windows API PyQt pyautogui PIL中的ImageGrab模块 impor...

python逆序打印各位数字的方法

如下所示: # -*- coding: utf-8 -*- # raw_input获取给定的一个不多于5位的正整数。 # 一、求它是几位数; # 二、逆序打印出各位数字。 def f...