使用Python设置tmpfs来加速项目的教程

yipeiwu_com5年前Python基础

 对我当前工程进行全部测试需要花费不少时间。既然有 26 GB 空闲内存,为何不让其发挥余热呢? tmpfs 可以通过把文件系统保存在大内存中来加速测试的执行效率。

但优点也是缺点,tmpfs 只把结果保存在内存中,所以你必须自己编写脚本来把结果回写到磁盘上进行保留。而且这些脚本必须良好书写和执行,否则就要失去部分或全部的工作成果了。

一种常见的方法是直接在tmpfs文件夹中工作,然后把工作成果备份到磁盘上的一个文件夹中。当您的机器启动时你从那个备份文件夹恢复tmpfs文件夹。启动之后用cron同步tmpfs文件夹和磁盘文件夹。


我发现这个设置有点复杂容易出错。在启动的时候,或者对于crom,我从没有真正的相信。现在我用一种简单得多的设置,根本不用cron。

在我的机器上运行一个单项测试,使用IDE并发布于web服务器,其性能通常是合理的,只有运行全部测试需要许多时间。

我发现最佳之处是在磁盘上设置一个workspace,与/dev/shmand目录下运行所有测试的tmpfs同步。这或多或少使我的设置无需改变,并消除了可能松散的工作,这些仅仅是因为我在正确设置方面太垃圾了。


性能提升的结果是合理的:
 

$ nosetests && run_tests.py
........................................................................................................................................................................................................................................................
----------------------------------------------------------------------
Ran 248 tests in 107.070s
 
OK
........................................................................................................................................................................................................................................................
----------------------------------------------------------------------
Ran 248 tests in 19.423s
 
OK

现在比原来提高了 5 倍速度。

使用 python 来进行设置非常简单:
 

#!/bin/bash -e
 
WORK=src/py
LOG=$(pwd)/test.log
TARGET=$(hg root)
SHADOW=/dev/shm/shadow/$TARGET
 
date > $LOG
mkdir -p $SHADOW
 
cd $SHADOW
rsync --update --delete --exclude=".*" --exclude=ENV --archive $TARGET ./..
 
if [ ! -d ENV ]
then
  virtualenv ENV
fi
. ENV/bin/activate
 
cd $WORK
python setup.py develop >> $LOG
nosetests $* | tee -a $LOG
exit ${PIPESTATUS[0]}

我只要重复同步到/dev/shm目录,设置测试环境(virtualenv and python setup.PY)和运行测试(nosetests)。

在tmpfs文件夹里仍可用命令行运行单个测试。也可以把这个从你的IDE中踢走,但你会失去你的测试运行和调试的能力。如我之前所说,我现在不需要这些。

我希望我对tmpfs的这个变通使用能帮助你建立一个更快速的开发环境,而无须遭受所有的脚本麻烦。

相关文章

pytorch 在网络中添加可训练参数,修改预训练权重文件的方法

实践中,针对不同的任务需求,我们经常会在现成的网络结构上做一定的修改来实现特定的目的。 假如我们现在有一个简单的两层感知机网络: # -*- coding: utf-8 -*- im...

详谈套接字中SO_REUSEPORT和SO_REUSEADDR的区别

Socket的基本背景 在讨论这两个选项的区别时,我们需要知道的是BSD实现是所有socket实现的起源。基本上其他所有的系统某种程度上都参考了BSD socket实现(或者至少是其接口...

python实现神经网络感知器算法

python实现神经网络感知器算法

现在我们用python代码实现感知器算法。 # -*- coding: utf-8 -*- import numpy as np class Perceptron(object)...

Python正则表达式介绍

Python正则表达式介绍

注意:本文基于Python2.4完成;如果看到不明白的词汇请记得百度谷歌或维基,whatever。 1. 正则表达式基础 1.1. 简单介绍 正则表达式并不是Python的一部分。正则表...

Python中return语句用法实例分析

本文实例讲述了Python中return语句用法。分享给大家供大家参考。具体如下: return语句: return语句用来从一个函数 返回 即跳出函数。我们也可选从函数 返回一个值 。...