浅析Python中的序列化存储的方法

yipeiwu_com5年前Python基础

在程序运行的过程中,所有的变量都是在内存中,比如,定义一个dict:

d = dict(name='Bob', age=20, score=88)

可以随时修改变量,比如把name改成'Bill',但是一旦程序结束,变量所占用的内存就被操作系统全部回收。如果没有把修改后的'Bill'存储到磁盘上,下次重新运行程序,变量又被初始化为'Bob'。

我们把变量从内存中变成可存储或传输的过程称之为序列化,在Python中叫pickling,在其他语言中也被称之为serialization,marshalling,flattening等等,都是一个意思。

序列化之后,就可以把序列化后的内容写入磁盘,或者通过网络传输到别的机器上。

反过来,把变量内容从序列化的对象重新读到内存里称之为反序列化,即unpickling。

Python提供两个模块来实现序列化:cPickle和pickle。这两个模块功能是一样的,区别在于cPickle是C语言写的,速度快,pickle是纯Python写的,速度慢,跟cStringIO和StringIO一个道理。用的时候,先尝试导入cPickle,如果失败,再导入pickle:

try:
  import cPickle as pickle
except ImportError:
  import pickle

首先,我们尝试把一个对象序列化并写入文件:

>>> d = dict(name='Bob', age=20, score=88)
>>> pickle.dumps(d)
"(dp0\nS'age'\np1\nI20\nsS'score'\np2\nI88\nsS'name'\np3\nS'Bob'\np4\ns."

pickle.dumps()方法把任意对象序列化成一个str,然后,就可以把这个str写入文件。或者用另一个方法pickle.dump()直接把对象序列化后写入一个file-like Object:

>>> f = open('dump.txt', 'wb')
>>> pickle.dump(d, f)
>>> f.close()

看看写入的dump.txt文件,一堆乱七八糟的内容,这些都是Python保存的对象内部信息。

当我们要把对象从磁盘读到内存时,可以先把内容读到一个str,然后用pickle.loads()方法反序列化出对象,也可以直接用pickle.load()方法从一个file-like Object中直接反序列化出对象。我们打开另一个Python命令行来反序列化刚才保存的对象:

>>> f = open('dump.txt', 'rb')
>>> d = pickle.load(f)
>>> f.close()
>>> d
{'age': 20, 'score': 88, 'name': 'Bob'}

变量的内容又回来了!

当然,这个变量和原来的变量是完全不相干的对象,它们只是内容相同而已。

Pickle的问题和所有其他编程语言特有的序列化问题一样,就是它只能用于Python,并且可能不同版本的Python彼此都不兼容,因此,只能用Pickle保存那些不重要的数据,不能成功地反序列化也没关系。

相关文章

python列表,字典,元组简单用法示例

本文实例讲述了python列表,字典,元组简单用法。分享给大家供大家参考,具体如下: 列表 #_*_ coding:utf-8 _*_ # 列表,定义在方括号的形式中,可以进行切片操...

python 除法保留两位小数点的方法

如下所示: a = 1 b = 3 print(a/b) #方法一: print(round(a/b,2)) #方法二: print(format(float(a)/float(b)...

python requests 库请求带有文件参数的接口实例

python requests 库请求带有文件参数的接口实例

有些接口参数是一个文件格式,比如fiddler 抓包参数如下显示 这个接口的 form-data fiddler 显示的和不带文件参数的接口有明显区别,显示的不是简单的键值对,所以我们...

详细解析Python中的变量的数据类型

详细解析Python中的变量的数据类型

 变量是只不过保留的内存位置用来存储值。这意味着,当创建一个变量,那么它在内存中保留一些空间。 根据一个变量的数据类型,解释器分配内存,并决定如何可以被存储在所保留的内存中。因...

Python 数据库操作 SQLAlchemy的示例代码

程序在运行过程中所有的的数据都存储在内存 (RAM) 中,「RAM 是易失性存储器,系统掉电后 RAM 中的所有数据将全部丢失」。在大多数情况下我们希望程序运行中产生的数据能够长久的保存...