介绍Python中内置的itertools模块

yipeiwu_com6年前Python基础

Python的内建模块itertools提供了非常有用的用于操作迭代对象的函数。

首先,我们看看itertools提供的几个“无限”迭代器:

>>> import itertools
>>> natuals = itertools.count(1)
>>> for n in natuals:
...   print n
...
1
2
3
...

因为count()会创建一个无限的迭代器,所以上述代码会打印出自然数序列,根本停不下来,只能按Ctrl+C退出。

cycle()会把传入的一个序列无限重复下去:

>>> import itertools
>>> cs = itertools.cycle('ABC') # 注意字符串也是序列的一种
>>> for c in cs:
...   print c
...
'A'
'B'
'C'
'A'
'B'
'C'
...

同样停不下来。

repeat()负责把一个元素无限重复下去,不过如果提供第二个参数就可以限定重复次数:

>>> ns = itertools.repeat('A', 10)
>>> for n in ns:
...   print n
...

打印10次'A'

无限序列只有在for迭代时才会无限地迭代下去,如果只是创建了一个迭代对象,它不会事先把无限个元素生成出来,事实上也不可能在内存中创建无限多个元素。

无限序列虽然可以无限迭代下去,但是通常我们会通过takewhile()等函数根据条件判断来截取出一个有限的序列:

>>> natuals = itertools.count(1)
>>> ns = itertools.takewhile(lambda x: x <= 10, natuals)
>>> for n in ns:
...   print n
...

打印出1到10

itertools提供的几个迭代器操作函数更加有用:
chain()

chain()可以把一组迭代对象串联起来,形成一个更大的迭代器:

for c in chain('ABC', 'XYZ'):
  print c
# 迭代效果:'A' 'B' 'C' 'X' 'Y' 'Z'

groupby()

groupby()把迭代器中相邻的重复元素挑出来放在一起:

>>> for key, group in itertools.groupby('AAABBBCCAAA'):
...   print key, list(group) # 为什么这里要用list()函数呢?
...
A ['A', 'A', 'A']
B ['B', 'B', 'B']
C ['C', 'C']
A ['A', 'A', 'A']

实际上挑选规则是通过函数完成的,只要作用于函数的两个元素返回的值相等,这两个元素就被认为是在一组的,而函数返回值作为组的key。如果我们要忽略大小写分组,就可以让元素'A'和'a'都返回相同的key:

>>> for key, group in itertools.groupby('AaaBBbcCAAa', lambda c: c.upper()):
...   print key, list(group)
...
A ['A', 'a', 'a']
B ['B', 'B', 'b']
C ['c', 'C']
A ['A', 'A', 'a']

imap()

imap()和map()的区别在于,imap()可以作用于无穷序列,并且,如果两个序列的长度不一致,以短的那个为准。

>>> for x in itertools.imap(lambda x, y: x * y, [10, 20, 30], itertools.count(1)):
...   print x
...
10
40
90

注意imap()返回一个迭代对象,而map()返回list。当你调用map()时,已经计算完毕:

>>> r = map(lambda x: x*x, [1, 2, 3])
>>> r # r已经计算出来了
[1, 4, 9]

当你调用imap()时,并没有进行任何计算:

>>> r = itertools.imap(lambda x: x*x, [1, 2, 3])
>>> r
<itertools.imap object at 0x103d3ff90>
# r只是一个迭代对象

必须用for循环对r进行迭代,才会在每次循环过程中计算出下一个元素:

>>> for x in r:
...   print x
...
1
4
9

这说明imap()实现了“惰性计算”,也就是在需要获得结果的时候才计算。类似imap()这样能够实现惰性计算的函数就可以处理无限序列:

>>> r = itertools.imap(lambda x: x*x, itertools.count(1))
>>> for n in itertools.takewhile(lambda x: x<100, r):
...   print n
...

结果是什么?

如果把imap()换成map()去处理无限序列会有什么结果?

>>> r = map(lambda x: x*x, itertools.count(1))

结果是什么?

ifilter()

不用多说了,ifilter()就是filter()的惰性实现。
小结

itertools模块提供的全部是处理迭代功能的函数,它们的返回值不是list,而是迭代对象,只有用for循环迭代的时候才真正计算。

相关文章

Python Subprocess模块原理及实例

Python Subprocess模块原理及实例

前言 其实有一个模块也支持执行系统命令,那个模块就是sys.system,但他执行系统命令会直接通过主进程去执行命令,那假如,该命令的执行需要耗费一个小时,那么主进程会卡一个小时,而不...

python运用pygame库实现双人弹球小游戏

python运用pygame库实现双人弹球小游戏

使用python pygame库实现一个双人弹球小游戏,两人分别控制一个左右移动的挡板用来拦截小球,小球会在两板间不停弹跳,拦截失败的一方输掉游戏,规则类似于简化版的乒乓球。 因为是第一...

Python中用sleep()方法操作时间的教程

 mktime()方法是localtime()反函数。它的参数是struct_time或全9元组,它返回一个浮点数,为了兼容时time()。 如果输入值不能表示为有效的时间,那...

python tkinter canvas 显示图片的示例

先来看一下该方法的说明 create_image(position, **options) [#] Draws an image on the canvas. position I...

python使用Pandas库提升项目的运行速度过程详解

python使用Pandas库提升项目的运行速度过程详解

前言 如果你从事大数据工作,用Python的Pandas库时会发现很多惊喜。Pandas在数据科学和分析领域扮演越来越重要的角色,尤其是对于从Excel和VBA转向Python的用户。...