python验证码识别的实例详解
其实关于验证码识别涉及很多方面的内容,入手难度大,但是入手后,可拓展性又非常广泛,可玩性极强,成就感也很足,对这感兴趣的朋友们下面跟着小编一起来学习学习吧。
依赖
sudo apt-get install python-imaging sudo apt-get install tesseract-ocr pip install pytesseract
利用google ocr来识别验证码
from PIL import Image import pytesseract image = Image.open('v1.jpg') vcode = pytesseract.image_to_string(image) print vcode
但是pytesseract
本身识别率不高,而且一般网站的验证码都带有大量干扰元素。( ̄▽ ̄)"
所以我们首先要对验证码进行去噪。
对于单像素干扰线、干扰点我们可以通过扫描整个图像,考察每一个像素点所临近的八个像素点的颜色,如果不同的个数大于一定的值,那就说明该点是离散点,需要去除。
另外也可以尝试设定阈值来直接将验证码二值化。
下面是两张学校网站上的验证码
我们可以看到验证码存在单像素干扰点,所以我们需要设法去除。但是经过反复刷新验证码,发现这个验证码
1. 只有加法运算
2.至多两位数的加法
3.文字部分一定是红色(255,0,0)
有了上述的信息,可以判断这个验证码的生成算法是有缺陷的
import Image from numpy import * import pytesseract im = Image.open('1.png') im = im.convert('RGB') #拉长图像,方便识别。 im = im.resize((200,80)) a = array(im) for i in xrange(len(a)): for j in xrange(len(a[i])): if a[i][j][0] == 255: a[i][j]=[0,0,0] else: a[i][j]=[255,255,255] im = Image.fromarray(a) im.show() vcode = pytesseract.image_to_string(im) print vcode
利用上述脚本我们可以将图像进行二值化,利用google ocr进行识别。再通过eval()
来对表达式进行求值。
总结
python验证码识别的内容到这就基本介绍了,希望这篇文章对大家的学习或者工作能有所帮助,如果有疑问大家可以留言交流。