Python heapq使用详解及实例代码

yipeiwu_com6年前Python基础

 Python heapq 详解

Python有一个内置的模块,heapq标准的封装了最小堆的算法实现。下面看两个不错的应用。

小顶堆(求TopK大)

话说需求是这样的: 定长的序列,求出TopK大的数据。

import heapq
import random

class TopkHeap(object):
  def __init__(self, k):
    self.k = k
    self.data = []

  def Push(self, elem):
    if len(self.data) < self.k:
      heapq.heappush(self.data, elem)
    else:
      topk_small = self.data[0]
      if elem > topk_small:
        heapq.heapreplace(self.data, elem)

  def TopK(self):
    return [x for x in reversed([heapq.heappop(self.data) for x in xrange(len(self.data))])]

if __name__ == "__main__":
  print "Hello"
  list_rand = random.sample(xrange(1000000), 100)
  th = TopkHeap(3)
  for i in list_rand:
    th.Push(i)
  print th.TopK()
  print sorted(list_rand, reverse=True)[0:3]

大顶堆(求BtmK小)

这次的需求变得更加的困难了:给出N长的序列,求出BtmK小的元素,即使用大顶堆。

算法实现的核心思路是:将push(e)改为push(-e)、pop(e)改为-pop(e)。

class BtmkHeap(object):
  def __init__(self, k):
    self.k = k
    self.data = []

  def Push(self, elem):
    # Reverse elem to convert to max-heap
    elem = -elem
    # Using heap algorighem
    if len(self.data) < self.k:
      heapq.heappush(self.data, elem)
    else:
      topk_small = self.data[0]
      if elem > topk_small:
        heapq.heapreplace(self.data, elem)

  def BtmK(self):
    return sorted([-x for x in self.data])

 感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

Python中装饰器学习总结

本文研究的主要内容是Python中装饰器相关学习总结,具体如下。 装饰器(decorator)功能 引入日志 函数执行时间统计 执行函数前预备处理 执行函数后清理功能...

一个基于flask的web应用诞生 flask和mysql相连(4)

一个基于flask的web应用诞生 flask和mysql相连(4)

上一章实现了登录的部分功能,之所以说是部分功能,是因为用户名和密码写成固定值肯定是不可以的,一个整体的功能,至少需要注册,登录,密码修改等,这就需要提供一个把这些值存储到数据库的能力。...

Python实现某论坛自动签到功能

1.[文件] DakeleSign.py ~ 4KB #!/usr/bin/env python # -*- coding: utf-8 -*- __author__ = 'popp...

详解通过API管理或定制开发ECS实例

弹性管理 ECS 实例 获取 RAM 子账号 AK 密钥 使用API管理ECS实例,您需要能访问ECS资源的API密钥(AccessKey ID 和 AccessKey Secret)...

python查看FTP是否能连接成功的方法

本文实例讲述了python查看FTP是否能连接成功的方法。分享给大家供大家参考。具体如下: #!/usr/local/bin/python #-*- coding: UTF-8 -*...