详解Python list 与 NumPy.ndarry 切片之间的对比

yipeiwu_com5年前Python基础

详解Python list 与 NumPy.ndarry 切片之间的区别

实例代码:

# list 切片返回的是不原数据,对新数据的修改不会影响原数据
In [45]: list1 = [1, 2, 3, 4, 5] 

In [46]: list2 = list1[:3]

In [47]: list2
Out[47]: [1, 2, 3]

In [49]: list2[1] = 1999

# 原数据没变
In [50]: list1
Out[50]: [1, 2, 3, 4, 5]

In [51]: list2
Out[51]: [1, 1999, 3]



# 而 NumPy.ndarry 的切片返回的是原数据
In [52]: arr = np.array([1, 2, 3, 4, 5])

In [53]: arr
Out[53]: array([1, 2, 3, 4, 5])

In [54]: arr1 = arr[:3]

In [55]: arr1
Out[55]: array([1, 2, 3])

In [56]: arr1[0] = 989

In [57]: arr1
Out[57]: array([989,  2,  3])

# 修改了原数据
In [58]: arr
Out[58]: array([989,  2,  3,  4,  5])

# 若希望得到原数据的副本, 可以用 copy()
In [59]: arr2 = arr[:3].copy()

In [60]: arr2
Out[60]: array([989,  2,  3])

In [61]: arr2[1] = 99282

In [62]: arr2
Out[62]: array([ 989, 99282,   3])

# 原数据没被修改
In [63]: arr
Out[63]: array([989,  2,  3,  4,  5])

以上就是Python list 与 NumPy.ndarry 切片之间的区别的详解,如有疑问请留言或者到本站社区留言,感谢阅读,希望能帮助到大家,谢谢大家对本站的支持!

相关文章

Python 代码性能优化技巧分享

Python 代码性能优化技巧分享

如何进行 Python 性能优化,是本文探讨的主要问题。本文会涉及常见的代码优化方法,性能优化工具的使用以及如何诊断代码的性能瓶颈等内容,希望可以给 Python 开发人员一定的参考。...

python 导入数据及作图的实现

我们经常需要导入数据,按列提取 XY作图 方法一、 filename='/home/res/user/csluo/test.txt' #将文件名赋值为变量 X,...

python求最大值,不使用内置函数的实现方法

利用python进行求解,求解的要求是不能使用python内部封装好的函数例如:max way1: def findmax(data,n): if n==1: return d...

python简单读取大文件的方法

本文实例讲述了python简单读取大文件的方法。分享给大家供大家参考,具体如下: Python读取大文件(GB级别)采用的办法很简单: with open(...) as f: f...

Pycharm无法显示动态图片的解决方法

Pycharm无法显示动态图片的解决方法

最近在学习的时候遇到了一个问题始终没有解决,这个博客写的也不是完全解决了这个问题。指示换了一种可行的思路而已。 在运行一些显示动态的图片时,Pycharm只显示一帧,也没有找到什么解决...