利用Python-iGraph如何绘制贴吧/微博的好友关系图详解

yipeiwu_com5年前Python基础

前言

最近工作中遇到了一些需求,想通过图形化的方式显示社交网络特定用户的好友关系,上网找了一下这方面的图形库有networkx、graphviz等,找了好久我选择了iGraph这个图形库。下面话不多说了,来一起看看详细的介绍吧。

安装igraph

igraph在Windows下的安装稍微有点麻烦,之前尝试在windows用pip和conda直接装igraph都装不上,后来发现了lfd的网站 Unofficial Windows Binaries for Python Extension Packages , 里面有很多python的资源和库与工具。

在上面的网址中找到python_igraph去下载具体的python对应版本和是32位还是64位的,比如我下载了 python_igraph‑0.7.1.post6‑cp35‑none‑win_amd64.whl

利用pip 安装whl文件:pip install 文件名.whl

为了避免出错,打开cmd以后,要cd进入你存放的该whl文件的解压后的目录下在用pip进行安装。

绘制好友关系图

fans.txt 和 follow.txt分别保存了爬取下来的粉丝昵称以及关注人昵称。

#coding=utf-8
from igraph import *

count_fans=0   #粉丝数
count_following=0  #关注人数 
fans_name=[]   #粉丝昵称
following=[]   #关注人昵称
#打开爬取下的昵称文件
with open('fans.txt','r') as f:  
 lines=f.readlines()
 for line in lines:
  if (line!=None)&(line!='\n'):
   fans_name.append(line)
   # print fans_name
   count_fans+=1
with open('follow.txt','r') as c:
 lines=c.readlines()
 for line in lines:
  if (line!=None)&(line!='\n'):
   following.append(line)
   count_following+=1

g = Graph()   #创建
g.add_vertices(3+count_fans+count_following)
g.add_edges([(0,1),(1,2)])

g.vs[0]["name"]='Ta的粉丝'
g.vs[1]["name"]='目标用户'
g.vs[2]["name"]='Ta的关注'
g.es["trunk"] = [True, True]
g.vs["main_node"]=[1.5,3,1.5]

for i in range(3,count_fans+3):
 g.add_edges((0,i))
 g.es[i-1]["trunk"]=False
for j in range(count_fans+3,3+count_fans+count_following):
 g.add_edges((2,j))
 g.es[j-1]["trunk"]=False

index=3
for fans in fans_name:
 g.vs[index]["name"]=fans
 g.vs[index]["main_node"]=False
 index+=1
for name in following:
 g.vs[index]["name"]=name
 g.vs[index]["main_node"]=False
 index+=1

visual_style = {}
color_dic={1.5:"#cfe6ff",3:"#7299a7",False:"#cfe6ff"}
visual_style["vertex_label_size"]=11
visual_style["vertex_label_dist"]=1
visual_style["vertex_shape"]="circle"
visual_style["vertex_size"] = [7+ 10*int(main_node) for main_node in g.vs["main_node"]]
visual_style["edge_width"] = [1 + 2 * int(trunk) for trunk in g.es["trunk"]]
visual_style["vertex_color"] =[color_dic[main_node] for main_node in g.vs["main_node"]]
visual_style["vertex_label"] = g.vs["name"]
visual_style["bbox"] = (1000, 1000)
visual_style["margin"] = 150
layout = g.layout("grid_fr")
visual_style["layout"] = layout
plot(g, **visual_style)

最终结果如图:

以上只演示了一个用户的社交关系图,有精力的话可以尝试递归地一层一层爬下去,想象一下最终绘出来的图也是挺炫酷的。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

基于Python数据可视化利器Matplotlib,绘图入门篇,Pyplot详解

Pyplot matplotlib.pyplot是一个命令型函数集合,它可以让我们像使用MATLAB一样使用matplotlib。pyplot中的每一个函数都会对画布图像作出相应的改变,...

python脚本作为Windows服务启动代码详解

我们首先来看下全部代码: # -*- coding: cp936 -*- import win32serviceutil import win32service import...

python和opencv实现抠图

本文实例为大家分享了python实现抠图的具体代码,供大家参考,具体内容如下 其中使用了opencv中的grabcut方法 直接上代码 # encoding:utf-8 # 图像提取...

FFT快速傅里叶变换的python实现过程解析

FFT快速傅里叶变换的python实现过程解析

FFT是DFT的高效算法,能够将时域信号转化到频域上,下面记录下一段用python实现的FFT代码。 # encoding=utf-8 import numpy as np imp...

python实现简单点对点(p2p)聊天

python实现简单点对点(p2p)聊天

点对点聊天首先是基于多线程的网络编程,其次就是将每一个连接都保存为一个具有独一属性的对象并添加到连接列表中,对于每一个连接对象发送过来的信息必须要包含主要的三项内容(from,to,me...