Python金融数据可视化汇总

yipeiwu_com6年前Python基础

通过本篇内容给大家介绍一下Python实现金融数据可视化中两列数据的提取、分别画、双坐标轴、双图、两种不同的图等代码写法和思路总结。

import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(2000)
y = np.random.standard_normal((20,2))
# print(y)

'''
不同的求和
print(y.cumsum())
print(y.sum(axis=0))
print(y.cumsum(axis=0))
'''

# 绘图
plt.figure(figsize=(7,4))
plt.plot(y.cumsum(axis=0),linewidth=2.5)
plt.plot(y.cumsum(axis=0),'bo')

plt.grid(True)
plt.axis("tight")

plt.xlabel('index')
plt.ylabel('values')
plt.title('a simple plot')

plt.show()

2.下面分别提取两组数据,进行绘图。

import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(2000)
date = np.random.standard_normal((20,2))
y = date.cumsum(axis=0)

print(y)

# 重点下面两种情况的区别
print(y[1])   # 取得是 第1行的数据 [-0.37003581 1.74900181]
print(y[:,0])  # 取得是 第1列的数据 [ 1.73673761 -0.37003581 0.21302575 0.35026529 ...

# 绘图
plt.plot(y[:,0],lw=2.5,label="1st",color='blue')
plt.plot(y[:,1],lw=2.5,label="2st",color='red')
plt.plot(y,'ro')

# 添加细节
plt.title("A Simple Plot",size=20,color='red')
plt.xlabel('Index',size=20)
plt.ylabel('Values',size=20)

# plt.axis('tight')
plt.xlim(-1,21)
plt.ylim(np.min(y)-1,np.max(y)+1)

# 添加图例
plt.legend(loc=0)

plt.show()

3.双坐标轴。

import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(2000)
date = np.random.standard_normal((20,2))
y = date.cumsum(axis=0)

y[:,0]=y[:,0]*100

fig,ax1 = plt.subplots()
plt.plot(y[:,0],'b',label="1st")
plt.plot(y[:,0],'ro')

plt.grid(True)
plt.axis('tight')
plt.xlabel("Index")
plt.ylabel('Values of 1st')
plt.title("This is double axis label")

plt.legend(loc=0)

ax2=ax1.twinx()
plt.plot(y[:,1],'g',label="2st")
plt.plot(y[:,1],'r*')
plt.ylabel("Values of 2st")
plt.legend(loc=0)

plt.show()

4. 分为两个图绘画。

import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(2000)
date = np.random.standard_normal((20,2))
y = date.cumsum(axis=0)

y[:,0]=y[:,0]*100

plt.figure(figsize=(7,5))    # 确定图片大小
plt.subplot(211)        # 确定第一个图的位置 (行,列,第几个)两行一列第一个图

plt.plot(y[:,0],'b',label="1st")
plt.plot(y[:,0],'ro')

plt.grid(True)
plt.axis('tight')
plt.xlabel("Index")
plt.ylabel('Values of 1st')
plt.title("This is double axis label")

plt.legend(loc=0)

plt.subplot(212)        # 确定第一个图的位置
plt.plot(y[:,1],'g',label="2st")
plt.plot(y[:,1],'r*')
plt.ylabel("Values of 2st")
plt.legend(loc=0)

plt.show()

5.在两个图层中绘制两种不同的图(直线图立方图)

import matplotlib as mpl
import numpy as np
import matplotlib.pyplot as plt

np.random.seed(2000)
date = np.random.standard_normal((20,2))
y = date.cumsum(axis=0)

y[:,0]=y[:,0]*100

plt.figure(figsize=(7,5))    # 确定图片大小
plt.subplot(121)        # 确定第一个图的位置

plt.plot(y[:,0],'b',label="1st")
plt.plot(y[:,0],'ro')

plt.grid(True)
plt.axis('tight')
plt.xlabel("Index")
plt.ylabel('Values',size=20)
plt.title("1st date set")

plt.legend(loc=0)

plt.subplot(122)        # 确定第一个图的位置
plt.bar(np.arange(len(y[:,1])),y[:,1],width = 0.5,color='g',label="2nd") # 直方图的画法
plt.grid(True)
plt.xlabel("Index")
plt.title('2nd date set')
plt.legend(loc=0)

plt.show()

以上就是本次交给大家的Python制作金融数据等用到的图形化界面代码写法。

相关文章

Python实现调度算法代码详解

Python实现调度算法代码详解

调度算法 操作系统管理了系统的有限资源,当有多个进程(或多个进程发出的请求)要使用这些资源时,因为资源的有限性,必须按照一定的原则选择进程(请求)来占用资源。这就是调度。目的是控制资源使...

python验证码识别教程之滑动验证码

前言 上篇文章记录了2种分割验证码的方法,此外还有一种叫做”滴水算法”(Drop Fall Algorithm)的方法,但本人智商原因看这个算法看的云里雾里的,所以今天记录滑动验证码的处...

利用python对Excel中的特定数据提取并写入新表的方法

最近刚开始学python,正好实习工作中遇到对excel中的数据进行处理的问题,就想到利用python来解决,也恰好练手。 实际的问题是要从excel表中提取日期、邮件地址和时间,然后统...

解决python3读取Python2存储的pickle文件问题

我在使用python3.5处理一个序列化文件xxx.pk,不过这个.pk文件是我在python2.7里面存储的,当我用python3读取的时候就会报如下的错误。 import pic...

Python学习笔记之Django创建第一个数据库模型的方法

Python学习笔记之Django创建第一个数据库模型的方法

Django里面集成了SQLite的数据库,对于初期研究来说,可以用这个学习。 第一步,创建数据库就涉及到建表等一系列的工作,在此之前,要先在cmd执行一个命令: python ma...