python实现神经网络感知器算法

yipeiwu_com5年前Python基础

现在我们用python代码实现感知器算法。

# -*- coding: utf-8 -*-
import numpy as np


class Perceptron(object):
 """
 eta:学习率
 n_iter:权重向量的训练次数
 w_:神经分叉权重向量
 errors_:用于记录神经元判断出错次数
 """

 def __init__(self, eta=0.01, n_iter=2):
  self.eta = eta
  self.n_iter = n_iter
  pass

 def fit(self, X, y):
  """
  输入训练数据培训神经元
  X:神经元输入样本向量
  y: 对应样本分类
  X:shape[n_samples,n_features]
  x:[[1,2,3],[4,5,6]]
  n_samples = 2 元素个数
  n_features = 3 子向量元素个数
  y:[1,-1]
  初始化权重向量为0
  加一是因为前面算法提到的w0,也就是步调函数阈值
  """
  self.w_ = np.zeros(1 + X.shape[1])
  self.errors_ = []
  for _ in range(self.n_iter):
   errors = 0
   """
   zip(X,y) = [[1,2,3,1],[4,5,6,-1]]
   xi是前面的[1,2,3]
   target是后面的1
   """
   for xi, target in zip(X, y):
    """
    predict(xi)是计算出来的分类
    """
    update = self.eta * (target - self.predict(xi))
    self.w_[1:] += update * xi
    self.w_[0] += update
    print update
    print xi
    print self.w_
    errors += int(update != 0.0)
    self.errors_.append(errors)
    pass

 def net_input(self, X):
  """
  z = w0*1+w1*x1+....Wn*Xn
  """
  return np.dot(X, self.w_[1:]) + self.w_[0]

 def predict(self, X):
  return np.where(self.net_input(X) >= 0, 1, -1)


if __name__ == '__main__':
 datafile = '../data/iris.data.csv'
 import pandas as pd

 df = pd.read_csv(datafile, header=None)
 import matplotlib.pyplot as plt
 import numpy as np

 y = df.loc[0:100, 4].values
 y = np.where(y == "Iris-setosa", 1, -1)
 X = df.iloc[0:100, [0, 2]].values
 # plt.scatter(X[:50, 0], X[:50, 1], color="red", marker='o', label='setosa')
 # plt.scatter(X[50:100, 0], X[50:100, 1], color="blue", marker='x', label='versicolor')
 # plt.xlabel("hblength")
 # plt.ylabel("hjlength")
 # plt.legend(loc='upper left')
 # plt.show()

 pr = Perceptron()
 pr.fit(X, y)

其中数据为

 

控制台输出为

 

你们跑代码的时候把n_iter设置大点,我这边是为了看每次执行for循环时方便查看数据变化。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python快速转换numpy数组中Nan和Inf的方法实例说明

在使用numpy数组的过程中时常会出现nan或者inf的元素,可能会造成数值计算时的一些错误。这里提供一个numpy库函数的用法,使nan和inf能够最简单地转换成相应的数值。 num...

python安装Scrapy图文教程

python安装Scrapy图文教程

安装方法 pip install Scrapy 如果顺利的话不用管直接一路下来就OK 验证是否安装成功 安装成功 不顺利的情况 1)lxml安装不成功 使用whl进行安装,不过需要先...

Tensorflow 合并通道及加载子模型的方法

Tensorflow 合并通道及加载子模型的方法

最近在使用Tensorflow 实现DNN网络时,遇到一些问题。目前网上关于Tensorflow的资料还比较少,现把问题和解决方法写出来,仅供参考。 (1)将两个子模型的输出合并到一个通...

使用Python简单的实现树莓派的WEB控制

使用Python简单的实现树莓派的WEB控制

先给大家展示下效果如图,感觉还很满意请继续阅读全文:   用到的知识:Python Bottle HTML Javascript JQuery Bootstrap AJAX...

在Python中使用Neo4j的方法

在Python中使用Neo4j的方法

Neo4j是面向对象基于Java的 ,被设计为一个建立在Java之上、可以直接嵌入应用的数据存储。此后,其他语言和平台的支持被引入,Neo4j社区获得持续增长,获得了越来越多的技术支持者...