Python人脸识别初探

yipeiwu_com6年前Python基础

本文实例为大家分享了Python人脸识别的具体代码,供大家参考,具体内容如下

1.利用opencv库

sudo apt-get install libopencv-*
sudo apt-get install python-opencv
sudo apt-get install python-numpy

2 .Python实现

import os
import os
from PIL import Image,ImageDraw
import cv

def detect_object(image):
  grayscale = cv.CreateImage((image.width,image.height),8,1)#创建空的灰度值图片
  cv.CvtColor(image,grayscale,cv.CV_BGR2GRAY)
  cascade=cv.Load("/usr/share/opencv/haarcascades/haarcascade_frontalface_alt_tree.xml")#记载特征值库,此目录下还有好多库可以选用
  rect=cv.HaarDetectObjects(grayscale,cascade,cv.CreateMemStorage(),1.1,2,cv.CV_HAAR_DO_CANNY_PRUNING,(20,20))
  result=[]#标记位置
  for r in rect:
    result.append((r[0][0],r[0][1],r[0][0]+r[0][2],r[0][1]+r[0][3]))
  return result

def process(infile):
  image = cv.LoadImage(infile)
  if image:
    faces = detect_object(image)
  im = Image.open(infile)
  path = os.path.abspath(infile)
  save_path = os.path.splitext(path)[0]+"_face"
  try:
    os.mkdir(save_path)
  except:
    pass
  if faces:
    draw = ImageDraw.Draw(im)
    count=0
    for f in faces:
       count+=1
       draw.rectangle(f,outline=(255,0,0))
       a=im.crop(f)
       file_name=os.path.join(save_path,str(count)+".jpg")
       a.save(file_name)
    drow_save_path = os.path.join(save_path,"out.jpg")
    im.save(drow_save_path,"JPEG",quality=80)
  else:
    print "Error: cannot detect faces on %s" % infile
if __name__ == "__main__":
   process("test3.jpg")

3.效果对比

4.参考资料

python使用opencv进行人脸识别

Python+OpenCV人脸检测原理及示例详解

python利用OpenCV2实现人脸检测

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python进程通信之匿名管道实例讲解

匿名管道 管道是一个单向通道,有点类似共享内存缓存.管道有两端,包括输入端和输出端.对于一个进程的而言,它只能看到管道一端,即要么是输入端要么是输出端. os.pipe()返回2个文件描...

Python中类的定义、继承及使用对象实例详解

本文实例讲述了Python中类的定义、继承及使用对象的方法。分享给大家供大家参考。具体分析如下: Python编程中类的概念可以比作是某种类型集合的描述,如“人类”可以被看作一个类,然后...

Python3 使用map()批量的转换数据类型,如str转float的实现

我们知道map() 会根据提供的函数对指定序列做映射。 第一个参数 function 以参数序列中的每一个元素调用 function 函数,返回包含每次 function 函数返回值的新...

python将人民币转换大写的脚本代码

复制代码 代码如下:def Num2MoneyFormat( change_number ):    """    .转换数字...

Pandas 缺失数据处理的实现

数据丢失(缺失)在现实生活中总是一个问题。 机器学习和数据挖掘等领域由于数据缺失导致的数据质量差,在模型预测的准确性上面临着严重的问题。 在这些领域,缺失值处理是使模型更加准确和有效的重...