浅谈Python对内存的使用(深浅拷贝)

yipeiwu_com6年前Python基础

本文主要研究的是Python对内存的使用(深浅拷贝)的相关问题,具体介绍如下。

浅拷贝就是对引用的拷贝(只拷贝父对象)

深拷贝就是对对象的资源的拷贝

>>> a=[1,2,3,'a','b']
>>> b=a
>>> b
[1, 2, 3, 'a', 'b']
>>> a
[1, 2, 3, 'a', 'b']
>>> id(a)
3021737547592
>>> id(b)
3021737547592
>>> a.append('c')
>>> a
[1, 2, 3, 'a', 'b', 'c']
>>> b
[1, 2, 3, 'a', 'b', 'c']
>>> b.append(4)
>>> b
[1, 2, 3, 'a', 'b', 'c', 4]
>>> a
[1, 2, 3, 'a', 'b', 'c', 4]

从以上操作可以看出:将a赋值给b后,a和b的地址是一样的,无论那个发生变化,另一个都会跟着变化,始终保持相同。

>>> import copy
>>> a=[1,2,3,['a','b','c']]
>>> b=a
>>> c=copy.copy(a)
>>> b
[1, 2, 3, ['a', 'b', 'c']]
>>> c
[1, 2, 3, ['a', 'b', 'c']]
>>> id(a)
3021737548104
>>> id(b)
3021737548104
>>> id(c)
3021737494536    #浅拷贝父对象的地址不一样
>>> a.append('d')
>>> a
[1, 2, 3, ['a', 'b', 'c'], 'd']
>>> b
[1, 2, 3, ['a', 'b', 'c'], 'd']
>>> c
[1, 2, 3, ['a', 'b', 'c']] #a和c的地址不一样,因此a变化,c不变化




>>> id(a[0])
1686357680
>>> id(c[0])
1686357680
>>> id(a[3])
3021737547528
>>> id(c[3])   
3021737547528    #整个父对象所占的空间不一样,但相同的内层数据的所占空间一样
>>> a[3].append('d')
>>> a
[1, 2, 3, ['a', 'b', 'c', 'd'], 'd']
>>> c
[1, 2, 3, ['a', 'b', 'c', 'd']]#因为内层数据所占空间一样,所以a变化,c跟着变化

以上就是浅拷贝:整个父对象的地址不一样,内层数据的地址相同,操作内层数据的话,一同变化;操作对象为父对象时,拷贝对象不跟着变化。

>>> a
[1, 2, 3, ['a', 'b', 'c', 'd'], 'd']
>>> d=copy.deepcopy(a)
>>> d
[1, 2, 3, ['a', 'b', 'c', 'd'], 'd']
>>> id(a)
3021737548104
>>> id(d)
3021737547656  #深拷贝父对象的地址不一样

>>> a.append('e')
>>> a
[1, 2, 3, ['a', 'b', 'c', 'd'], 'd', 'e']
>>> d
[1, 2, 3, ['a', 'b', 'c', 'd'], 'd']#a和d的地址不一样,因此a变化,d不变化
>>> id(a[0])
1686357680
>>> id(d[0])
1686357680
>>> id(a[3])
3021737547528
>>> id(d[3])
3021737493256  #内层数据的地址不一样
>>> a[3].append('x')
>>> a
[1, 2, 3, ['a', 'b', 'c', 'd', 'x'], 'd', 'e']
>>> d
[1, 2, 3, ['a', 'b', 'c', 'd'], 'd']

以上是深拷贝

区别:

浅拷贝与原对象的内层数据地址相同;
深拷贝完全独立开来,与原对象没有任何联系。

总结

以上就是本文关于浅谈Python对内存的使用(深浅拷贝)的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python 读取串口数据,动态绘图的示例

Python 读取串口数据,动态绘图的示例

最近工作需要把单片机读取的传感器电压数据实时在PC上通过曲线显示出来,刚好在看python, 就试着用了python 与uart端口通讯,并且通过matplotlib.pyplot 模块...

python中的错误处理

用错误码来表示是否出错十分不便,因为函数本身应该返回的正常结果和错误码混在一起,造成调用者必须用大量的代码来判断是否出错: def foo(): r = some_functio...

通过python下载FTP上的文件夹的实现代码

复制代码 代码如下:# -*- encoding: utf8 -*-import osimport sysimport ftplibclass FTPSync(object): ...

python处理cookie详解

要在用户浏览器上安装cookie,HTTP服务器向HTTP响应添加类似以下内容的HTTP报头: 复制代码 代码如下:Set-Cookie:session=8345234;expires=...

详解Python的Lambda函数与排序

lambda函数是一种快速定义单行的最小函数,是从 Lisp 借用来的,可以用在任何需要函数的地方。下面的例子比较了传统的函数与lambda函数的定义方式。 前几天看到了一行求1000...