Python实现PS滤镜的旋转模糊功能示例

yipeiwu_com5年前Python基础

本文实例讲述了Python实现PS滤镜的旋转模糊功能。分享给大家供大家参考,具体如下:

这里用 Python 实现 PS 滤镜中的旋转模糊,具体的算法原理和效果可以参考附录相关介绍。Python代码如下:

from skimage import img_as_float
import matplotlib.pyplot as plt
from skimage import io
import numpy as np
import numpy.matlib
file_name='D:/Visual Effects/PS Algorithm/4.jpg'
img=io.imread(file_name)
img = img_as_float(img)
img_out = img.copy()
row, col, channel = img.shape
xx = np.arange (col)
yy = np.arange (row)
x_mask = numpy.matlib.repmat (xx, row, 1)
y_mask = numpy.matlib.repmat (yy, col, 1)
y_mask = np.transpose(y_mask)
center_y = (row -1) / 2.0
center_x = (col -1) / 2.0
R = np.sqrt((x_mask - center_x) **2 + (y_mask - center_y) ** 2)
angle = np.arctan2(y_mask - center_y , x_mask - center_x)
Num = 20
arr = ( np.arange(Num) + 1 ) / 100.0
for i in range (row):
  for j in range (col):
    T_angle = angle[i, j] + arr
    new_x = R[i, j] * np.cos(T_angle) + center_x
    new_y = R[i, j] * np.sin(T_angle) + center_y
    int_x = new_x.astype(int)
    int_y = new_y.astype(int)
    int_x[int_x > col-1] = col - 1
    int_x[int_x < 0] = 0
    int_y[int_y < 0] = 0
    int_y[int_y > row -1] = row -1
    img_out[i,j,0] = img[int_y, int_x, 0].sum()/Num
    img_out[i,j,1] = img[int_y, int_x, 1].sum()/Num
    img_out[i,j,2] = img[int_y, int_x, 2].sum()/Num
plt.figure(1)
plt.imshow(img)
plt.axis('off')
plt.figure(2)
plt.imshow(img_out)
plt.axis('off')
plt.show()

附:PS 滤镜——旋转模糊

这里给出灰度图像的模糊算法,彩色图像只要分别对三个通道做模糊即可。

%% spin blur
% 旋转模糊
clc;
clear all;
close all;
I=imread('4.jpg');
I=double(I);
% % % I_new=I;
% % % for kk=1:3
% % %   I_new(:,:,kk)=Spin_blur_Fun(I(:,:,kk), 30, 30);
% % % end
% % % imshow(I_new/255)
Image=I;
Image=0.2989 * I(:,:,1) + 0.5870 * I(:,:,2) + 0.1140 * I(:,:,3);
[row, col]=size(Image);
Image_new=Image;
Center_X=(col+1)/2;
Center_Y=(row+1)/2;
validPoint=1;
angle=5;
radian=angle*pi/180;
radian2=radian*radian;
Num=30;
Num2=Num*Num;
for i=1:row
  for j=1:col
    validPoint=1;
    x0=j-Center_X;
    y0=Center_Y-i;
    x1=x0;
    y1=y0;
    Sum_Pixel=Image(i,j);
    for k=1:Num
      x0=x1;
      y0=y1;
      %%% 逆时针
      % x1=x0-radian*y0/Num-radian2*x0/Num2;
      % y1=y0+radian*x0/Num-radian2*y0/Num2;
      %%% 顺时针
      x1=x0+radian*y0/Num-radian2*x0/Num2;
      y1=y0-radian*x0/Num-radian2*y0/Num2;
      x=floor(x1+Center_X);
      y=floor(Center_Y-y1);
      if(x>1 && x<col && y>1 && y<row)
        validPoint=validPoint+1;
        Sum_Pixel=Sum_Pixel+Image(y,x);
      end
    end
    Image_new(i,j)=Sum_Pixel/validPoint;
  end
end
 imshow(Image_new/255);

原图

效果图

效果图

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python图片操作技巧总结》、《Python数据结构与算法教程》、《Python Socket编程技巧总结》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python动态生成多维数组的方法示例

Python动态生成多维数组的方法示例

本文实例讲述了Python动态生成多维数组的方法。分享给大家供大家参考,具体如下: 多维数组其实就是多个一维数组的嵌套,Python中有原生的list,类似一个动态数组。 所以动态生成...

Python实现统计单词出现的个数

最近在看python脚本语言,脚本语言是一种解释性的语言,不需要编译,可以直接用,由解释器来负责解释。python语言很强大,而且写起来很简洁。下面的一个例子就是用python统计单词出...

浅谈Python中的全局锁(GIL)问题

CPU-bound(计算密集型) 和I/O bound(I/O密集型) 计算密集型任务(CPU-bound) 的特点是要进行大量的计算,占据着主要的任务,消耗CPU资源,一直处于满负荷状...

PyTorch 1.0 正式版已经发布了

PyTorch 1.0 同时面向产品化 AI 和突破性研究的发展,「我们在 PyTorch1.0 发布前解决了几大问题,包括可重用、性能、编程语言和可扩展性。」Facebook 人工智能...

跟老齐学Python之字典,你还记得吗?

字典,这个东西你现在还用吗?随着网络的发展,用的人越来越少了。不少人习惯于在网上搜索,不仅有web版,乃至于已经有手机版的各种字典了。我曾经用过一本小小的《新华字典》。 《新华字典》是中...