numpy.random.seed()的使用实例解析

yipeiwu_com5年前Python基础

这个函数的使用方法,已经有前辈讲解过了,只是自己在测试的时候有一些思考,所以便写了这篇博客。下面是前辈文章的原话:

seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。

编写如下第一份代码:

from numpy import *
num=0
while(num<5):
  random.seed(5)
  print(random.random())
  num+=1

运行结果为:

0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948

可以看到,每次运行的结果都是一样的

修改代码,如下为第二份代码:

from numpy import *
num=0
random.seed(5)
while(num<5):
  print(random.random())
  num+=1

运行结果为:

0.22199317108973948
0.8707323061773764
0.20671915533942642
0.9186109079379216
0.48841118879482914

可以看到,和上一份代码的运行结果不同。这里每次的输出结果都是不一样的。这也就提醒了我们在以后编写代码的时候要明白一点:random.seed(something)只能是一次有效。其实仔细想想也很自然,如果不是一次有效,比如说是一直有效,那岂不是会影响到后续的代码中随机数的选取?

这次测试的代码比较可以说是很简单的,但是却暴露了我的一个思维上的漏洞:在这次测试中我虽然明白了:

seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。

这段话的意思,但是我却先入为主地认为第二份代码的结果应和第一份代码中的一致。而通过反面思考,假设这个函数使用一次后便是一直有效的,那么每次生成的随即数都会相同,但是这样岂不是会影响到后续的代码中随机数的选取?

所以,以后学新的东西的时候,都要问自己傻问题,不断地去测试自己的想法以达到更深的理解。

故对于该函数的使用,可总结为:

seed( ) 用于指定随机数生成时所用算法开始的整数值。
1.如果使用相同的seed( )值,则每次生成的随即数都相同;
2.如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。
3.设置的seed()值仅一次有效

总结

以上就是本文关于numpy.random.seed()的使用实例解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

Python面向对象之继承和组合用法实例分析

本文实例讲述了Python面向对象之继承和组合用法。分享给大家供大家参考,具体如下: 面向对象的组合用法 软件重用的重要方式除了继承之外还有另外一种方式,即:组合 组合指的是,在一个类中...

Python打包方法Pyinstaller的使用

Python打包方法Pyinstaller的使用

Python是一个脚本语言,被解释器解释执行。它的发布方式: .py文件:对于开源项目或者源码没那么重要的,直接提供源码,需要使用者自行安装Python并且安装依赖的各种库。(Py...

Falsk 与 Django 过滤器的使用与区别详解

1,flask中内置的过滤器模板中常用方法: {#过滤器调用方式{{变量|过滤器名称}} #} <!-- safe过滤器,可以禁用转义 --> {{'<st...

Python 正则表达式 re.match/re.search/re.sub的使用解析

From Python正则表达式 re.match(pattern, string, flags=0) 尝试从字符串起始位置匹配一个模式;如果不是起始位置匹配成功,则 re.match(...

Python3.6正式版新特性预览

按照Python官网上的计划,Python3.6正式版期望在2016-12-16号发布,也就是这周五。从去年的5月份开始,Python3.6版本就已经动手开发了,期间也断断续续的发布了4...