numpy.random.seed()的使用实例解析

yipeiwu_com5年前Python基础

这个函数的使用方法,已经有前辈讲解过了,只是自己在测试的时候有一些思考,所以便写了这篇博客。下面是前辈文章的原话:

seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。

编写如下第一份代码:

from numpy import *
num=0
while(num<5):
  random.seed(5)
  print(random.random())
  num+=1

运行结果为:

0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948
0.22199317108973948

可以看到,每次运行的结果都是一样的

修改代码,如下为第二份代码:

from numpy import *
num=0
random.seed(5)
while(num<5):
  print(random.random())
  num+=1

运行结果为:

0.22199317108973948
0.8707323061773764
0.20671915533942642
0.9186109079379216
0.48841118879482914

可以看到,和上一份代码的运行结果不同。这里每次的输出结果都是不一样的。这也就提醒了我们在以后编写代码的时候要明白一点:random.seed(something)只能是一次有效。其实仔细想想也很自然,如果不是一次有效,比如说是一直有效,那岂不是会影响到后续的代码中随机数的选取?

这次测试的代码比较可以说是很简单的,但是却暴露了我的一个思维上的漏洞:在这次测试中我虽然明白了:

seed( ) 用于指定随机数生成时所用算法开始的整数值,如果使用相同的seed( )值,则每次生成的随即数都相同,如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。

这段话的意思,但是我却先入为主地认为第二份代码的结果应和第一份代码中的一致。而通过反面思考,假设这个函数使用一次后便是一直有效的,那么每次生成的随即数都会相同,但是这样岂不是会影响到后续的代码中随机数的选取?

所以,以后学新的东西的时候,都要问自己傻问题,不断地去测试自己的想法以达到更深的理解。

故对于该函数的使用,可总结为:

seed( ) 用于指定随机数生成时所用算法开始的整数值。
1.如果使用相同的seed( )值,则每次生成的随即数都相同;
2.如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。
3.设置的seed()值仅一次有效

总结

以上就是本文关于numpy.random.seed()的使用实例解析的全部内容,希望对大家有所帮助。感兴趣的朋友可以继续参阅本站其他相关专题,如有不足之处,欢迎留言指出。感谢朋友们对本站的支持!

相关文章

python高手之路python处理excel文件(方法汇总)

python高手之路python处理excel文件(方法汇总)

用python来自动生成excel数据文件。python处理excel文件主要是第三方模块库xlrd、xlwt、xluntils和pyExcelerator,除此之外,python处理e...

轻松实现python搭建微信公众平台

轻松实现python搭建微信公众平台

本文主要是一步一步教大家如何利用python搭建微信公众平台,有兴趣的朋友可以参考一下 使用的工具,python 新浪SAE平台,微信的公众平台 你需要先在微信的公众平台与新浪SAE平台...

妙用itchat! python实现久坐提醒功能

本文实例为大家分享了python久坐提醒的具体实现代码,供大家参考,具体内容如下 #!/usr/bin/envy python3 #-*- coding:utf-8 -*- impo...

关于Python内存分配时的小秘密分享

关于Python内存分配时的小秘密分享

前言 Python 中的sys 模块极为基础而重要,它主要提供了一些给解释器使用(或由它维护)的变量,以及一些与解释器强交互的函数。 本文将会频繁地使用该模块的getsizeof()...

python读取几个G的csv文件方法

如下所示: import pandas as pd file = pd.read_csv('file.csv',iterator=True) while True: chunk...