tensorflow建立一个简单的神经网络的方法

yipeiwu_com5年前Python基础

本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。

如何添加一层网络

代码如下:

def add_layer(inputs, in_size, out_size, activation_function=None):
  # add one more layer and return the output of this layer
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

注意该函数中是xW+b,而不是Wx+b。所以要注意乘法的顺序。x应该定义为[类别数量, 数据数量], W定义为[数据类别,类别数量]。

创建一些数据

# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

numpy的linspace函数能够产生等差数列。start,stop决定等差数列的起止值。endpoint参数指定包不包括终点值。

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)[source] 
Return evenly spaced numbers over a specified interval. 
Returns num evenly spaced samples, calculated over the interval [start, stop]. 

noise函数为添加噪声所用,这样二次函数的点不会与二次函数曲线完全重合。

numpy的newaxis可以新增一个维度而不需要重新创建相应的shape在赋值,非常方便,如上面的例子中就将x_data从一维变成了二维。

添加占位符,用作输入

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

添加隐藏层和输出层

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

计算误差,并用梯度下降使得误差最小

# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

完整代码如下:

from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):
  # add one more layer and return the output of this layer
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
           reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

# important step
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()

for i in range(1000):
  # training
  sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
  if i % 50 == 0:
    # to visualize the result and improvement
    try:
      ax.lines.remove(lines[0])
    except Exception:
      pass
    prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    # plot the prediction
    lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
    plt.pause(0.1)

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Request的中断和ErrorHandler实例解析

概述 在view函数中,如果需要中断request,可以使用abort(500)或者直接raise exception。当然我们还需要返回一个出错信息给前端,所以需要定制一下ErrorH...

Python实现Windows和Linux之间互相传输文件(文件夹)的方法

Python实现Windows和Linux之间互相传输文件(文件夹)的方法

项目中需要从Windows系统传输ISO文件到Linux测试系统,然后再Linux测试系统里安装这个ISO文件。所以就需要实现如何把文件从Windows系统传输到Linux系统中。 在项...

Django跨域请求问题的解决方法示例

前言 本文主要给大家介绍了关于Django跨域请求问题解决的几种方法,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 几种方法: 使用django-cors-he...

Python 解决OPEN读文件报错 ,路径以及r的问题

Python 中 ‘unicodeescape' codec can't decode bytes in position XXX: trun错误解决方案 背景描述 今天在运用Pytho...

python组合无重复三位数的实例

# -*- coding: utf-8 -*- # 简述:这里有四个数字,分别是:1、2、3、4 #提问:能组成多少个互不相同且无重复数字的三位数?各是多少? def f(n):...