tensorflow建立一个简单的神经网络的方法

yipeiwu_com6年前Python基础

本笔记目的是通过tensorflow实现一个两层的神经网络。目的是实现一个二次函数的拟合。

如何添加一层网络

代码如下:

def add_layer(inputs, in_size, out_size, activation_function=None):
  # add one more layer and return the output of this layer
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

注意该函数中是xW+b,而不是Wx+b。所以要注意乘法的顺序。x应该定义为[类别数量, 数据数量], W定义为[数据类别,类别数量]。

创建一些数据

# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

numpy的linspace函数能够产生等差数列。start,stop决定等差数列的起止值。endpoint参数指定包不包括终点值。

numpy.linspace(start, stop, num=50, endpoint=True, retstep=False, dtype=None)[source] 
Return evenly spaced numbers over a specified interval. 
Returns num evenly spaced samples, calculated over the interval [start, stop]. 

noise函数为添加噪声所用,这样二次函数的点不会与二次函数曲线完全重合。

numpy的newaxis可以新增一个维度而不需要重新创建相应的shape在赋值,非常方便,如上面的例子中就将x_data从一维变成了二维。

添加占位符,用作输入

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])

添加隐藏层和输出层

# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

计算误差,并用梯度下降使得误差最小

# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

完整代码如下:

from __future__ import print_function
import tensorflow as tf
import numpy as np
import matplotlib.pyplot as plt

def add_layer(inputs, in_size, out_size, activation_function=None):
  # add one more layer and return the output of this layer
  Weights = tf.Variable(tf.random_normal([in_size, out_size]))
  biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
  Wx_plus_b = tf.matmul(inputs, Weights) + biases
  if activation_function is None:
    outputs = Wx_plus_b
  else:
    outputs = activation_function(Wx_plus_b)
  return outputs

# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise

# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1])
# add hidden layer
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer
prediction = add_layer(l1, 10, 1, activation_function=None)

# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
           reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)

# important step
init = tf.initialize_all_variables()
sess = tf.Session()
sess.run(init)

# plot the real data
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
plt.show()

for i in range(1000):
  # training
  sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
  if i % 50 == 0:
    # to visualize the result and improvement
    try:
      ax.lines.remove(lines[0])
    except Exception:
      pass
    prediction_value = sess.run(prediction, feed_dict={xs: x_data})
    # plot the prediction
    lines = ax.plot(x_data, prediction_value, 'r-', lw=5)
    plt.pause(0.1)

运行结果:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现换位加密算法的示例

如下所示: def translationCipher(msg,key): result = [""]*key for i in range(key):#把每一列元素按...

python批量读取txt文件为DataFrame的方法

python批量读取txt文件为DataFrame的方法

我们有时候会批量处理同一个文件夹下的文件,并且希望读取到一个文件里面便于我们计算操作。比方我有下图一系列的txt文件,我该如何把它们写入一个txt文件中并且读取为DataFrame格式呢...

python三元运算符实现方法

这是今天在温习lambda表达式的时候想到的问题,众所周知C系列语言中的 三元运算符(?:)是一个非常好用的语句, 关于C中的三元运算符 表达式1?表达式2:表达式3 那么在python...

Python3.5局部变量与全局变量作用域实例分析

本文实例讲述了Python3.5局部变量与全局变量作用域。分享给大家供大家参考,具体如下: 1、局部变量与全局变量定义: 在子程序(函数)中定义的变量称为:局部变量;在程序顶级(一开始)...

Python多线程编程(一):threading模块综述

Python这门解释性语言也有专门的线程模型,Python虚拟机使用GIL(Global Interpreter Lock,全局解释器锁)来互斥线程对共享资源的访问,但暂时无法利用多处理...