python数据分析数据标准化及离散化详解

yipeiwu_com6年前Python基础

本文为大家分享了python数据分析数据标准化及离散化的具体内容,供大家参考,具体内容如下

标准化

1、离差标准化

是对原始数据的线性变换,使结果映射到[0,1]区间。方便数据的处理。消除单位影响及变异大小因素影响。
基本公式为:

x'=(x-min)/(max-min)

代码:

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#离差标准化
data1 = (data-data.min())/(data.max()-data.min())
print(data1)

运行结果

2、标准差标准化

消除单位影响以及变量自身变异影响。(零-均值标准化)
基本公式为:

x'=(x-平均数)/标准差

python代码:

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#标准差标准化
data1 = (data-data.mean())/data.std()
print(data1)

运行结果:

3、小数定标标准化

消除单位影响
基本公式为:
其中j=lg(max(|x|)),即以10为底的x的绝对值最大的对数

x' = x/10^j

实现代码为:

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#标准差标准化
j = np.ceil(np.log10(data.abs().max()))#进一取整,abs()为取绝对值
data1 = data/10**j
print(data1)


结果:

离散化

离散化是程序设计中一个常用的技巧,它可以有效的降低时间复杂度。其基本思想就是在众多可能的情况中,只考虑需要用的值。离散化可以改进一个低效的算法,甚至实现根本不可能实现的算法

1、等宽离散化

将连续数据按照等宽区间标准离散化数据,好处之一是处理的数据是有限个数据而不是无限多。
使用pandas的cut方法。非等宽只需要更改cut的第二个参数,例如:第二个参数为[1,100,3000,10000,200000],即划分为了四个区间。

#!/user/bin/env python
#-*- coding:utf-8 -*-
#author:M10
import numpy as np
import pandas as pd
import matplotlib.pylab as plt
import mysql.connector
conn = mysql.connector.connect(host='localhost',
            user='root',
            passwd='123456',
            db='python')#链接本地数据库
sql = 'select price,comment from taob'#sql语句
data = pd.read_sql(sql,conn)#获取数据
#离散化
data1 = data['price'].T.values#获取价格的一维数组
lable=['很低','低','中','高','很高']
data2 = pd.cut(data1,5,labels=lable)
print(data2)


执行结果:

2、等频率离散化

将相同数量的数据放进一个区间。

3、一维聚类离散化

按属性对数据进行聚类离散。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django中利用filter与simple_tag为前端自定义函数的实现方法

前言 Django的模板引擎提供了一般性的功能函数,通过前端可以实现多数的代码逻辑功能,这里称之为一般性,是因为它仅支持大多数常见情况下的函数功能,例如if判断,ifequal对比返回值...

Python实现给qq邮箱发送邮件的方法

本文实例讲述了Python实现给qq邮箱发送邮件的方法。分享给大家供大家参考。具体实现方法如下: #-*-coding:utf-8-*- #===================...

python实现NB-IoT模块远程控制

本来想尝试下如果不使用运营商网络应用平台情况下,只是在服务商服务器上是否可以实现对终端完全控制,如果这样可行,那么物联网应用服务端更有灵活性。实际情况下,很难实现和运营商网络对等的处理,...

Python实现比较扑克牌大小程序代码示例

是Udacity课程的第一个项目。 先从宏观把握一下思路,目的是做一个比较德州扑克大小的问题 首先,先抽象出一个处理的函数,它根据返回值的大小给出结果。 之后我们在定义如何比较两个或者...

python 求定积分和不定积分示例

python 求定积分和不定积分示例

求f(x) = sin(x)/x 的不定积分和负无穷到正无穷的定积分 sin(x)/x 的不定积分是信号函数sig ,负无穷到正无穷的定积分为pi import math impor...