tensorflow实现softma识别MNIST

yipeiwu_com5年前Python基础

识别MNIST已经成了深度学习的hello world,所以每次例程基本都会用到这个数据集,这个数据集在tensorflow内部用着很好的封装,因此可以方便地使用。

这次我们用tensorflow搭建一个softmax多分类器,和之前搭建线性回归差不多,第一步是通过确定变量建立图模型,然后确定误差函数,最后调用优化器优化。

误差函数与线性回归不同,这里因为是多分类问题,所以使用了交叉熵。

另外,有一点值得注意的是,这里构建模型时我试图想拆分多个函数,但是后来发现这样做难度很大,因为图是在规定变量就已经定义好的,不能随意拆分,也不能当做变量传来传去,因此需要将他们写在一起。

代码如下:

#encoding=utf-8 
__author__ = 'freedom' 
import tensorflow as tf 
 
def loadMNIST(): 
 from tensorflow.examples.tutorials.mnist import input_data 
 mnist = input_data.read_data_sets('MNIST_data',one_hot=True) 
 return mnist 
 
def softmax(mnist,rate=0.01,batchSize=50,epoch=20): 
 n = 784 # 向量的维度数目 
 m = None # 样本数,这里可以获取,也可以不获取 
 c = 10 # 类别数目 
 
 x = tf.placeholder(tf.float32,[m,n]) 
 y = tf.placeholder(tf.float32,[m,c]) 
 
 w = tf.Variable(tf.zeros([n,c])) 
 b = tf.Variable(tf.zeros([c])) 
 
 pred= tf.nn.softmax(tf.matmul(x,w)+b) 
 loss = tf.reduce_mean(-tf.reduce_sum(y*tf.log(pred),reduction_indices=1)) 
 opt = tf.train.GradientDescentOptimizer(rate).minimize(loss) 
 
 init = tf.initialize_all_variables() 
 
 sess = tf.Session() 
 sess.run(init) 
 for index in range(epoch): 
  avgLoss = 0 
  batchNum = int(mnist.train.num_examples/batchSize) 
  for batch in range(batchNum): 
   batch_x,batch_y = mnist.train.next_batch(batchSize) 
   _,Loss = sess.run([opt,loss],{x:batch_x,y:batch_y}) 
   avgLoss += Loss 
  avgLoss /= batchNum 
  print 'every epoch average loss is ',avgLoss 
 
 right = tf.equal(tf.argmax(pred,1),tf.argmax(y,1)) 
 accuracy = tf.reduce_mean(tf.cast(right,tf.float32)) 
 print 'Accracy is ',sess.run(accuracy,({x:mnist.test.images,y:mnist.test.labels})) 
 
 
if __name__ == "__main__": 
 mnist = loadMNIST() 
 softmax(mnist) 

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django实现跨域请求过程详解

Django实现跨域请求过程详解

前言 CORS 即 Cross Origin Resource Sharing 跨域资源共享. 跨域请求分两种:简单请求、复杂请求. 简单请求 简单请求必须满足下述条件. HTTP方法为...

Python 中的 else详解

我们都知道 Python 中else的基本用法是在条件控制语句中的 if...elif...else...,但是 else 还有两个其它的用途,一是用于循环的结尾,另一个是用在错误处理的...

python3之模块psutil系统性能信息使用

psutil是个跨平台库,能够轻松实现获取系统运行的进程和系统利用率,包括CPU、内存、磁盘、网络等信息。 它主要应用于信息监控,分析和限制系统资源及进程的管理。它实现了同等命令命令行工...

Python学习笔记之常用函数及说明

基本定制型 复制代码 代码如下:C.__init__(self[, arg1, ...]) 构造器(带一些可选的参数)C.__new__(self[, arg1, ...]) 构造器(带...

程序员的七夕用30行代码让Python化身表白神器

程序员的七夕用30行代码让Python化身表白神器

转眼又到了咱们中国传统的情人节七夕了,今天笔者就带大家来领略一下用Python表白的方式。让程序员的恋人们感受一下IT人的浪漫。    一、词云制作 首先咱们可以用之...