pytorch 数据集图片显示方法

yipeiwu_com6年前Python基础

图片显示

pytorch 载入的数据集是元组tuple 形式,里面包括了数据及标签(train_data,label),其中的train_data数据可以转换为torch.Tensor形式,方便后面计算使用。

同样给一些刚入门的同学在使用载入的数据显示图片的时候带来一些难以理解的地方,这里主要是将Tensor与numpy转换的过程,理解了这些就可以就行转换了

CIAFA10数据集

首先载入数据集,这里做了一些数据处理,包括图片尺寸、数据归一化等

import torch
from torch.autograd import Variable 
import matplotlib.pyplot as plt 
import torchvision.datasets as dset
import torchvision.transforms as transforms
from autoencoder import AutoEncoder
import torch.nn as nn
import torchvision
import numpy as np
dataset = dset.CIFAR10(root='../train/data', download=True, 
    transform=transforms.Compose([
    transforms.Scale(200),
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
    transforms.Gray()
    ]))

在这里 dataset 是一个CIFAR10对象,(大家可以查看一下他的源代码)

方式一

dataset[1] = ([torch.FloatTensor of size 1x200x200],9)

载入的第二个数据是个tensor格式,包含一个标签 9

这里我们做的就是将torch.FloatTensor 转换为numpy,然后显示

b = dataset[1][0].numpy()
#取数据,不取标签

因为这里的b仍然是1*200*200的大小,所以要重新reshape一下,适合输出图像

plt.imshow(b.reshape(200,200),cmap = 'gray')
plt.show()

然后可以显示图像了

方式二

利用torch的接口

img = torchvision.utils.make_grid(dataset[1][0]).numpy()
plt.imshow(np.transpose(img,(1,2,0)))
plt.show()

这用np.transpose 是因为plt.imshow在显示 时候输入的是(imgsize,imgsieze,channels),而这里得到的img是(3,200,200)的格式,所以进行了转换,才能显示

以上这篇pytorch 数据集图片显示方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python2与Python3的区别点整理

python解释器默认编码(python2与python3的区别一) python2 解释器默认编码:ascii python3 解释器默认编码:utf-8 输入(python2与p...

Numpy的简单用法小结

Numpy的简单用法,下面就一起来了解一下 import numpy as np 一、创建ndarray对象 列表转换成ndarray: >>> a = [1...

Win8下python3.5.1安装教程

Win8下python3.5.1安装教程

本文实例为大家分享了Android九宫格图片展示的具体代码,供大家参考,具体内容如下 首先,找到python下载的地址,如下图所示 在这里我选择了python 3.5.1(看网上的其...

【Python】Python的urllib模块、urllib2模块批量进行网页下载文件

【Python】Python的urllib模块、urllib2模块批量进行网页下载文件

由于需要从某个网页上下载一些PDF文件,但是需要下载的PDF文件有几百个,所以不可能用人工点击来下载。正好Python有相关的模块,所以写了个程序来进行PDF文件的下载,顺便熟悉了Pyt...

Django之提交表单与前后端交互的方法

Django之META与前后端交互 1 提交表单之GET 前端提交数据与发送 1)提交表单数据 2)提交JSON数据 后端的数据接收与响应 1)接收GET请求数据 2)接收POST请...