详谈在flask中使用jsonify和json.dumps的区别

yipeiwu_com5年前Python基础

flask提供了jsonify函数供用户处理返回的序列化json数据,而python自带的json库中也有dumps方法可以序列化json对象,那么在flask的视图函数中return它们会有什么不同之处呢?

想必开始很多人和我一样搞不清楚,只知道既然框架提供了方法就用,肯定不会错。

但作为开发人员,我们需要弄清楚开发过程中各种实现方式的特点和区别,这样在我们面对不同的需求时才能做出相对合理的选择,而不是千篇一律地使用自己熟悉的。下面我就jsonify和json.dumps的区别这一问题简单探讨一下。

一、实验

python的flask框架为用户提供了直接返回包含json格式数据响应的方法,即jsonify,在开发中会经常用到。如下一段简单的flask后端代码,服务端视图函数根据请求参数返回json格式的数据到客户端。

from flask import Flask
from flask import jsonify
from flask import Response
app = Flask(__name__)
@app.route('/hello/<name>/<words>',methods=['GET'])
def hello(name,words):
 return jsonify({'name':name,'words':words})#也可以传入key=value形式的参数,如jsonify(name=name,words=words)
if __name__ == '__main__':
 app.run()

用chrome浏览器访问得到的页面如下图:

现在我们改为使用python自带的json库json.dumps作为视图函数的直接返回值,代码如下:

from flask import Flask
from flask import jsonify
from flask import Response
app = Flask(__name__)
@app.route('/hello/<name>/<words>',methods=['GET'])
def hello(name,words):
 return json.dumps({'name':name,'words':words})
if __name__ == '__main__':
 app.run()

PS: 直接返回json.dumps的结果是可行的,因为flask会判断并使用make_response方法自动构造出响应,只不过响应头各个字段是默认的。若要自定义响应字段,则可以使用make_response或Response自行构造响应。用chrome访问的响应页面如下图。

二、分析

1.Content-Type有区别

jsonify的作用实际上就是将我们传入的json形式数据序列化成为json字符串,作为响应的body,并且设置响应的Content-Type为application/json,构造出响应返回至客户端。jsonify的部分源码如下:

def jsonify(*args, **kwargs):
 if __debug__:
 _assert_have_json()
 return current_app.response_class(json.dumps(dict(*args, **kwargs),
 indent=None if request.is_xhr else 2), mimetype='application/json')

可以看出jsonify实际上也是使用了json.dumps来序列化json形式的数据,作为响应正文返回。indent表示json格式化的缩进,若是Ajax请求则不缩进(因为一般Ajax数据没必要直接展示),否则缩进2格。但想必从第一部分的实验结果我们已经看出来了,使用jsonify时响应的Content-Type字段值为application/json,而使用json.dumps时该字段值为text/html。Content-Type决定了接收数据的一方如何看待数据,如何处理数据,如果是application/json,则可以直接当做json对象处理,若是text/html,则还要将文本对象转化为json对象再做处理(个人理解,有误请指正)。

2.接受参数有区别

jsonify可以接受和python中的dict构造器同样的参数,如下图。

而json.dumps比jsonify可以多接受list类型和一些其他类型的参数。但我试了一下,形式为key1=value1,[key2=value2,...]这样的参数是不行的,会报出“TypeError: dumps() takes exactly 1 argument (0 given)”这一错误,而jsonify不会报错并能正常返回数据。

最后,我们可以使用flask中的make_response方法或者直接通过Response类,通过设置mimetype参数来达到和使用jsonify差不多的效果,但少写点代码何乐而不为呢?况且简洁一点更不容易出错,参数越多调试和维护就越麻烦。当然,使用哪个并不是绝对的,必要时要根据前端的数据处理方式来决定。

更多关于jsonify的知识请参考官方文档:http://flask.pocoo.org/docs/0.12/api/

更多关于json.dumps的知识参考官方文档:https://docs.python.org/2/library/json.html

以上这篇详谈在flask中使用jsonify和json.dumps的区别就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

为什么入门大数据选择Python而不是Java?

为什么入门大数据选择Python而不是Java?

马云说:“未来最大的资源就是数据,不参与大数据十年后一定会后悔。”毕竟出自wuli马大大之口,今年二月份我开始了学习大数据的道路,直到现在对大数据的学习脉络和方法也渐渐清晰。今天我们就来...

KMP算法精解及其Python版的代码示例

KMP算法是经典的字符串匹配算法,解决从字符串S,查找模式字符串M的问题。算法名称来源于发明者Knuth,Morris,Pratt。 假定从字符串S中查找M,S的长度ls,M的长度lm,...

Python实现统计英文文章词频的方法分析

本文实例讲述了Python实现统计英文文章词频的方法。分享给大家供大家参考,具体如下: 应用介绍: 统计英文文章词频是很常见的需求,本文利用python实现。 思路分析: 1、把英文文章...

python实现文件助手中查看微信撤回消息

利用python实现防撤回,对方撤回的消息可在自己的微信文件传输助手中查看。 如果想变成可执行文件放在电脑中运行,可用pyinstaller将此程序打包成exe文件。 pyinsta...

Python读取txt某几列绘图的方法

晚上帮同学用Python脚本绘图,大概需求是读取一个txt文件的两列分别作为x和y的值,绘图即可,代码如下: #coding:utf-8 import numpy as np imp...