Numpy数组的保存与读取方法

yipeiwu_com6年前Python基础

1. 数组以二进制格式保存

np.save和np.load是读写磁盘数组数据的两个主要函数。默认情况下,数组以未压缩的原始二进制格式保存在扩展名为npy的文件中,以数组a为例

np.save("filename.npy",a)
b = np.load("filename.npy")

利用这种方法,保存文件的后缀名字一定会被置为.npy

2. 存取文本文件

使用 np.savetxt 和 np.loadtxt 只能读写 1 维和 2 维的数组

np.savetxt:将数组写入以某种分隔符隔开的文本文件中

np.loadtxt:指定某种分隔符,将文本文件读入到数组中

np.savetxt("filename.txt",a)
b = numpy.loadtxt("filename.txt", delimiter=',')

3. 保存为二进制文件

使用数组的 tofile 函数可以方便地将数组中数据以二进制的格式写进文件

a.tofile("filename.bin")
b = np.fromfile("filename.bin",dtype = **)

该方法与np.save有几点区别:

tofile函数只能将数组保存为二进制文件,文件后缀名没有固定要求。这种保存方法对数据读取有要求,np.fromfile 需要手动指定读出来的数据的的dtype,如果指定的格式与保存时的不一致,则读出来的就是错误的数据。

tofile函数不能保存当前数据的行列信息,不管数组的排列顺序是C语言格式的还是Fortran语言格式,统一使用C语言格式输出。因此使用 np.fromfile 读出来的数据是一维数组,需要利用reshape指定行列信息。

例如下面的例子所示:

>>> a = np.arange(0,12)
>>> a.shape = 3,4
>>> a
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])
>>> a.tofile("a.bin")
>>> b = np.fromfile("a.bin", dtype=np.float) # 按照float类型读入数据
>>> b # 读入的数据是错误的
array([ 2.12199579e-314,  6.36598737e-314,  1.06099790e-313,
     1.48539705e-313,  1.90979621e-313,  2.33419537e-313])
>>> a.dtype # 查看a的dtype
dtype('int32')
>>> b = np.fromfile("a.bin", dtype=np.int32) # 按照int32类型读入数据
>>> b # 数据是一维的
array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11])
>>> b.shape = 3, 4 # 按照a的shape修改b的shape
>>> b
array([[ 0, 1, 2, 3],
    [ 4, 5, 6, 7],
    [ 8, 9, 10, 11]])

以上这篇Numpy数组的保存与读取方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python FTP两个文件夹间的同步实例代码

具体代码如下所示: # -*- coding: utf-8 -*- ''''''' ftp自动检测源文件夹的更新,将源文件夹更新的内容拷贝到目标文件夹中 使用树的层序遍...

在Pycharm中项目解释器与环境变量的设置方法

1.官网下载Pycharm community版如pycharm-community-2017.3.1.tar.gz。 2. #解压tar.gz tar xfz pycharm-*.ta...

Python简单生成8位随机密码的方法

本文实例讲述了Python简单生成8位随机密码的方法。分享给大家供大家参考,具体如下: #!/usr/bin/env python # -*- coding: utf-8 -*- i...

详解K-means算法在Python中的实现

详解K-means算法在Python中的实现

K-means算法简介 K-means是机器学习中一个比较常用的算法,属于无监督学习算法,其常被用于数据的聚类,只需为它指定簇的数量即可自动将数据聚合到多类中,相同簇中的数据相似度较高...

Python新手在作用域方面经常容易碰到的问题

通常,当我们定义了一个全局变量(好吧,我这样说是因为讲解的需要——全局变量是不好的),我们用一个函数访问它们是能被Python理解的:   bar = 42 def fo...