对numpy中向量式三目运算符详解

yipeiwu_com6年前Python基础

如果用到数据筛选功能,可以使用x if condition else y的逻辑实现。如果使用的是纯Python,可以使用不断迭代的方式对每一组元素组合进行相应的判断筛选。不过,如果使用numpy中的向量化计可以大大加速运算的过程。

在numpy中有一个这个三目运算的向量版本numpy.where。where方法可以接收三个参数,第一个参数为条件向量,而第二、第三个参数可以是矩阵也可以是标量。接下来做一下相应功能的纯Python功能实现以及向量方式实现。

记录如下:

In [76]: xarr = np.array([1.1,1.2,1.3,1.4,1.5])

In [77]: yarr = xarr + 1


In [78]: xarr
Out[78]: array([ 1.1, 1.2, 1.3, 1.4, 1.5])


In [79]: yarr
Out[79]: array([ 2.1, 2.2, 2.3, 2.4, 2.5])


In [80]: cond = np.array([True,False,True,True,False])


In [81]: cond
Out[81]: array([ True, False, True, True, False], dtype=bool)


In [82]: result1 = [(x if c else y) for x,y,c in zip(xarr,yarr,cond)]


In [83]: result1
Out[83]: [1.1000000000000001, 2.2000000000000002, 1.3, 1.3999999999999999, 2.5]


In [84]: result2 = np.where(cond,xarr,yarr)


In [85]: result2
Out[85]: array([ 1.1, 2.2, 1.3, 1.4, 2.5])

从浮点表示上,两者有一点点小小的差异,在小数点后多位,通常在数值表示上可以忽略。不过,这里还是要进行一下两个结果的一致性判断,因为之前也看到过Python在浮点表达上因为机器而产生的差异。

测试的结果如下:

In [87]: result1 == result2
Out[87]: array([ True, True, True, True, True], dtype=bool)

从上面的结果可以看出,两个计算结果是一致的。

以上这篇对numpy中向量式三目运算符详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解Python中的type和object

详解Python中的type和object

type  所有类是type生成的 a = 1 b = "abc" print("type a:{}".format(type(a))) print("type int:{...

Python os.access()用法实例

概述 os.access() 方法使用当前的uid/gid尝试访问路径。大部分操作使用有效的 uid/gid, 因此运行环境可以在 suid/sgid 环境尝试。 语法 acces...

python队列通信:rabbitMQ的使用(实例讲解)

python队列通信:rabbitMQ的使用(实例讲解)

(一)、前言 为什么引入消息队列? 1.程序解耦 2.提升性能 3.降低多业务逻辑复杂度 (二)、python操作rabbit mq rabbitmq配置安装基本使用参见上节文章,不再复...

Python制作钉钉加密/解密工具

又是很久没有写技术博客了,盖因最近都在学习知识,也没有总结出什么值得分享的内容,所以一直停笔至今。最近的工作和钉钉的开发打上了交到,官方并没有提供任何Python的SDK,于是只能全部自...

Python2.7简单连接与操作MySQL的方法

本文实例讲述了Python2.7简单连接与操作MySQL的方法。分享给大家供大家参考,具体如下: Python号称简单优雅,其实新手摆弄一些东西的时候还是挺麻烦的,比如使用Python2...