tensorflow学习笔记之简单的神经网络训练和测试

yipeiwu_com6年前Python基础

本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下

刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。

神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。

数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:

其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:

在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:

y是我们预测的概率值,y'是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变W和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(W和b的最优化值)。

完整代码如下:

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_actual = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))    #初始化权值W
b = tf.Variable(tf.zeros([10]))      #初始化偏置项b
y_predict = tf.nn.softmax(tf.matmul(x,W) + b)   #加权变换并进行softmax回归,得到预测概率
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1))  #求交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)  #用梯度下降法使得残差最小

correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  #在测试阶段,测试准确度计算
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))        #多个批次的准确度均值

init = tf.initialize_all_variables()
with tf.Session() as sess:
  sess.run(init)
  for i in range(1000):        #训练阶段,迭代1000次
    batch_xs, batch_ys = mnist.train.next_batch(100)      #按批次训练,每批100行数据
    sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys})  #执行训练
    if(i%100==0):         #每训练100次,测试一次
      print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})

每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1W行数据测试的平均精度为91%左右,不是太高,肯定没有CNN高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python入门_浅谈逻辑判断与运算符

Python入门_浅谈逻辑判断与运算符

这是关于Python的第6篇文章,主要介绍下逻辑判断与运算符。 (一) 逻辑判断: 如果要实现一个复杂的功能程序,逻辑判断必不可少。逻辑判断的最基本标准:布尔类型。 布尔类型只有两个值:...

对python requests的content和text方法的区别详解

问题: 一直在想requests的content和text属性的区别,从print 结果来看是没有任何区别的 看下源码: @property def text(self):...

异步任务队列Celery在Django中的使用方法

异步任务队列Celery在Django中的使用方法

前段时间在Django Web平台开发中,碰到一些请求执行的任务时间较长(几分钟),为了加快用户的响应时间,因此决定采用异步任务的方式在后台执行这些任务。在同事的指引下接触了Celery...

opencv3/Python 稠密光流calcOpticalFlowFarneback详解

opencv3/Python 稠密光流calcOpticalFlowFarneback详解

光流是由物体或相机的运动引起的图像对象在两个连续帧之间的视在运动模式.光流方法计算在t和 t+Δtt+Δt时刻拍摄的两个图像帧之间的每个像素的运动位置。这些方法被称为差分,因为它们基于图...

Linux下使用python调用top命令获得CPU利用率

本文定位:想通过python调用top命令获取cpu使用率但暂时没有思路的情况。 如果单纯为了获得cpu的利用率,通过top命令重定向可以轻松实现,命令如下: 复制代码 代码如下: to...