tensorflow学习笔记之简单的神经网络训练和测试

yipeiwu_com6年前Python基础

本文实例为大家分享了用简单的神经网络来训练和测试的具体代码,供大家参考,具体内容如下

刚开始学习tf时,我们从简单的地方开始。卷积神经网络(CNN)是由简单的神经网络(NN)发展而来的,因此,我们的第一个例子,就从神经网络开始。

神经网络没有卷积功能,只有简单的三层:输入层,隐藏层和输出层。

数据从输入层输入,在隐藏层进行加权变换,最后在输出层进行输出。输出的时候,我们可以使用softmax回归,输出属于每个类别的概率值。借用极客学院的图表示如下:

其中,x1,x2,x3为输入数据,经过运算后,得到三个数据属于某个类别的概率值y1,y2,y3. 用简单的公式表示如下:

在训练过程中,我们将真实的结果和预测的结果相比(交叉熵比较法),会得到一个残差。公式如下:

y是我们预测的概率值,y'是实际的值。这个残差越小越好,我们可以使用梯度下降法,不停地改变W和b的值,使得残差逐渐变小,最后收敛到最小值。这样训练就完成了,我们就得到了一个模型(W和b的最优化值)。

完整代码如下:

import tensorflow as tf
import tensorflow.examples.tutorials.mnist.input_data as input_data
mnist = input_data.read_data_sets("MNIST_data/", one_hot=True)
x = tf.placeholder(tf.float32, [None, 784])
y_actual = tf.placeholder(tf.float32, shape=[None, 10])
W = tf.Variable(tf.zeros([784,10]))    #初始化权值W
b = tf.Variable(tf.zeros([10]))      #初始化偏置项b
y_predict = tf.nn.softmax(tf.matmul(x,W) + b)   #加权变换并进行softmax回归,得到预测概率
cross_entropy = tf.reduce_mean(-tf.reduce_sum(y_actual*tf.log(y_predict),reduction_indies=1))  #求交叉熵
train_step = tf.train.GradientDescentOptimizer(0.01).minimize(cross_entropy)  #用梯度下降法使得残差最小

correct_prediction = tf.equal(tf.argmax(y_predict,1), tf.argmax(y_actual,1))  #在测试阶段,测试准确度计算
accuracy = tf.reduce_mean(tf.cast(correct_prediction, "float"))        #多个批次的准确度均值

init = tf.initialize_all_variables()
with tf.Session() as sess:
  sess.run(init)
  for i in range(1000):        #训练阶段,迭代1000次
    batch_xs, batch_ys = mnist.train.next_batch(100)      #按批次训练,每批100行数据
    sess.run(train_step, feed_dict={x: batch_xs, y_actual: batch_ys})  #执行训练
    if(i%100==0):         #每训练100次,测试一次
      print "accuracy:",sess.run(accuracy, feed_dict={x: mnist.test.images, y_actual: mnist.test.labels})

每训练100次,测试一次,随着训练次数的增加,测试精度也在增加。训练结束后,1W行数据测试的平均精度为91%左右,不是太高,肯定没有CNN高。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python类的专用方法实例分析

本文实例讲述了Python类的专用方法。分享给大家供大家参考。具体分析如下: Python 类可以定义专用方法,专用方法是在特殊情况下或当使用特别语法时由 Python 替你调用的,而不...

12步教你理解Python装饰器

通过下面的步骤让你由浅入深明白装饰器是什么。假定你拥有最基本的Python知识,本文阐述的东西可能对那些在工作中经常接触Python的人有很大的帮助。 1、函数(Functions) 在...

python微信跳一跳系列之自动计算跳一跳距离

python微信跳一跳系列之自动计算跳一跳距离

到现在为止,我们通过前面几篇博文的描述和分析,已经可以自动实现棋子、棋盘位置的准确判断,计算一下两个中心点之间的距离,并绘制在图形上,效果如下。 效果 图中的棋子定位采用HSV颜色识别...

Python性能提升之延迟初始化

所谓类属性的延迟计算就是将类的属性定义成一个property,只在访问的时候才会计算,而且一旦被访问后,结果将会被缓存起来,不用每次都计算。构造一个延迟计算属性的主要目的是为了提升性能...

你还在@微信官方?聊聊Python生成你想要的微信头像

你还在@微信官方?聊聊Python生成你想要的微信头像

今天早上@微信官方突然火了, 一句“请给我一面国旗@微信官方” 刷遍朋友圈。 到底是什么呢? 我们先来看看朋友圈 当然,这只是零零散散的部分截图, 看到这些,一股热血洒了出来, 我兴...