利用numpy和pandas处理csv文件中的时间方法

yipeiwu_com5年前Python基础

环境:numpy,pandas,python3

在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理。

date (UTC) Price 
01/01/2015 0:00 48.1 
01/01/2015 1:00 47.33 
01/01/2015 2:00 42.27
#coding:utf-8
import datetime
import pandas as pd
import numpy as np
import pickle
#用pandas将时间转为标准格式
dateparse = lambda dates: pd.datetime.strptime(dates,'%d/%m/%Y %H:%M')
#将时间栏合并,并转为标准时间格式
rawdata = pd.read_csv('RealMarketPriceDataPT.csv',parse_dates={'timeline':['date','(UTC)']},date_parser=dateparse)
#定义一个将时间转为数字的函数,s为字符串
def datestr2num(s):
 #toordinal()将时间格式字符串转为数字
 return datetime.datetime.strptime(s,'%Y-%m-%d %H:%M:%S').toordinal()
x = []
y = []
new_date = []
for i in range(rawdata.shape[0]):
 x_convert = int(datestr2num(str(rawdata.ix[i,0])))
 new_date.append(x_convert)
 y_convert = rawdata.ix[i,1].astype(np.float32)
 x.append(x_convert)
 y.append(y_convert)
x = np.array(x).astype(np.float32)
"""
with open('price.pickle','wb') as f:
 pickle.dump((x,y),f)
"""
print(datetime.datetime.fromordinal(new_date[0]),'------>>>>>>',new_date[0])
print(datetime.datetime.fromordinal(new_date[10]),'------>>>>>>',new_date[10])
print(datetime.datetime.fromordinal(new_date[20]),'------>>>>>>',new_date[20])
print(datetime.datetime.fromordinal(new_date[30]),'------>>>>>>',new_date[30])
print(datetime.datetime.fromordinal(new_date[40]),'------>>>>>>',new_date[40])
print(datetime.datetime.fromordinal(new_date[50]),'------>>>>>>',new_date[50])

结果

将csv文件中的时间栏合并为一列,并转为方便数据分析的float或int类型

以上这篇利用numpy和pandas处理csv文件中的时间方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 变量类型详解

Python 变量类型详解

变量存储在内存中的值。这就意味着在创建变量时会在内存中开辟一个空间。 基于变量的数据类型,解释器会分配指定内存,并决定什么数据可以被存储在内存中。 因此,变量可以指定不同的数据类型,这些...

Python实现迭代时使用索引的方法示例

本文实例讲述了Python实现迭代时使用索引的方法。分享给大家供大家参考,具体如下: 索引迭代 Python中,迭代永远是取出元素本身,而非元素的索引。 对于有序集合,元素确实是有索引的...

python中引用与复制用法实例分析

本文实例讲述了python中引用与复制用法。分享给大家供大家参考。具体分析如下: 在python中,任何不可变对象是传值的,而可变对象是传引用的。 不管是向函数传递参数或者是任何形式的对...

使用Python生成url短链接的方法

几乎所有的微薄都提供了缩短网址的服务,其原理就是将一个url地址按照一定的算法生成一段字符串,然后加在一个短域名后面边成了一个新的url地址,数据库中会存放这个短地址和原始的地址,当用户...

Python中的yield浅析

在介绍yield前有必要先说明下Python中的迭代器(iterator)和生成器(constructor)。 一、迭代器(iterator) 在Python中,for循环可以用于Pyt...