利用numpy和pandas处理csv文件中的时间方法

yipeiwu_com6年前Python基础

环境:numpy,pandas,python3

在机器学习和深度学习的过程中,对于处理预测,回归问题,有时候变量是时间,需要进行合适的转换处理后才能进行学习分析,关于时间的变量如下所示,利用pandas和numpy对csv文件中时间进行处理。

date (UTC) Price 
01/01/2015 0:00 48.1 
01/01/2015 1:00 47.33 
01/01/2015 2:00 42.27
#coding:utf-8
import datetime
import pandas as pd
import numpy as np
import pickle
#用pandas将时间转为标准格式
dateparse = lambda dates: pd.datetime.strptime(dates,'%d/%m/%Y %H:%M')
#将时间栏合并,并转为标准时间格式
rawdata = pd.read_csv('RealMarketPriceDataPT.csv',parse_dates={'timeline':['date','(UTC)']},date_parser=dateparse)
#定义一个将时间转为数字的函数,s为字符串
def datestr2num(s):
 #toordinal()将时间格式字符串转为数字
 return datetime.datetime.strptime(s,'%Y-%m-%d %H:%M:%S').toordinal()
x = []
y = []
new_date = []
for i in range(rawdata.shape[0]):
 x_convert = int(datestr2num(str(rawdata.ix[i,0])))
 new_date.append(x_convert)
 y_convert = rawdata.ix[i,1].astype(np.float32)
 x.append(x_convert)
 y.append(y_convert)
x = np.array(x).astype(np.float32)
"""
with open('price.pickle','wb') as f:
 pickle.dump((x,y),f)
"""
print(datetime.datetime.fromordinal(new_date[0]),'------>>>>>>',new_date[0])
print(datetime.datetime.fromordinal(new_date[10]),'------>>>>>>',new_date[10])
print(datetime.datetime.fromordinal(new_date[20]),'------>>>>>>',new_date[20])
print(datetime.datetime.fromordinal(new_date[30]),'------>>>>>>',new_date[30])
print(datetime.datetime.fromordinal(new_date[40]),'------>>>>>>',new_date[40])
print(datetime.datetime.fromordinal(new_date[50]),'------>>>>>>',new_date[50])

结果

将csv文件中的时间栏合并为一列,并转为方便数据分析的float或int类型

以上这篇利用numpy和pandas处理csv文件中的时间方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

分享一个pycharm专业版安装的永久使用方法

分享一个pycharm专业版安装的永久使用方法

刚开始接触Python,首先要解决的就是Python开发环境的搭建。 目前比较好用的Python开发工具是PyCharm,他有社区办和专业版两个版本,但是社区版支持有限,我们既然想好好学...

python判断端口是否打开的实现代码

复制代码 代码如下:#!/usr/bin/env python# name IsOpen.pyimport osimport socketdef IsOpen(ip,port):&nbs...

关于python中密码加盐的学习体会小结

给密码加密是什么:用户注册的密码一般网站管理人员会利用md5方法加密,这种加密方法的好处是它是单向加密的,也就是说,你只有在提前知道某一串密码对应的md5加密码,才能反推出密码是多少,虽...

举例介绍Python中的25个隐藏特性

注:这里忽略了生成器,装饰器,交换变量等熟知技巧 1. 函数参数unpack 老生常谈的了:   def foo(x, y): print x, y alist...

Python自定义函数的创建、调用和函数的参数详解

函数是组织好的,可重复使用的,用来实现单一,或相关联功能的代码段。函数能提高应用的模块性,和代码的重复利用率。你已经知道Python提供了许多内建函数,比如print()。但你也可以自己...