python+pandas分析nginx日志的实例

yipeiwu_com6年前Python基础

需求

通过分析nginx访问日志,获取每个接口响应时间最大值、最小值、平均值及访问量。

实现原理

将nginx日志uriuriupstream_response_time字段存放到pandas的dataframe中,然后通过分组、数据统计功能实现。

实现

1.准备工作

#创建日志目录,用于存放日志
mkdir /home/test/python/log/log
#创建文件,用于存放从nginx日志中提取的$uri $upstream_response_time字段
touch /home/test/python/log/log.txt
#安装相关模块
conda create -n science numpy scipy matplotlib pandas
#安装生成execl表格的相关模块
pip install xlwt

2.代码实现

#!/usr/local/miniconda2/envs/science/bin/python
#-*- coding: utf-8 -*-
#统计每个接口的响应时间
#请提前创建log.txt并设置logdir
import sys
import os
import pandas as pd
mulu=os.path.dirname(__file__)
#日志文件存放路径
logdir="/home/test/python/log/log"
#存放统计所需的日志相关字段
logfile_format=os.path.join(mulu,"log.txt")
print "read from logfile \n"
for eachfile in os.listdir(logdir):
 logfile=os.path.join(logdir,eachfile)
 with open(logfile, 'r') as fo:
  for line in fo:
   spline=line.split()
   #过滤字段中异常部分
   if spline[6]=="-":
    pass
   elif spline[6]=="GET":
    pass
   elif spline[-1]=="-":
    pass
   else:
    with open(logfile_format, 'a') as fw:
     fw.write(spline[6])
     fw.write('\t')
     fw.write(spline[-1])
     fw.write('\n')
print "output panda"
#将统计的字段读入到dataframe中
reader=pd.read_table(logfile_format,sep='\t',engine='python',names=["interface","reponse_time"] ,header=None,iterator=True)
loop=True
chunksize=10000000
chunks=[]
while loop:
 try:
  chunk=reader.get_chunk(chunksize)
  chunks.append(chunk)
 except StopIteration:
  loop=False
  print "Iteration is stopped."
df=pd.concat(chunks)
#df=df.set_index("interface")
#df=df.drop(["GET","-"])
df_groupd=df.groupby('interface')
df_groupd_max=df_groupd.max()
df_groupd_min= df_groupd.min()
df_groupd_mean= df_groupd.mean()
df_groupd_size= df_groupd.size()
#print df_groupd_max
#print df_groupd_min
#print df_groupd_mean
df_ana=pd.concat([df_groupd_max,df_groupd_min,df_groupd_mean,df_groupd_size],axis=1,keys=["max","min","average","count"])
print "output excel"
df_ana.to_excel("test.xls")

3.打印的表格如下:

要点

1. 日志文件比较大的情况下读取不要用readlines()、readline(),会将日志全部读到内存,导致内存占满。因此在此使用for line in fo迭代的方式,基本不占内存。

2. 读取nginx日志,可以使用pd.read_table(log_file, sep=' ‘, iterator=True),但是此处我们设置的sep无法正常匹配分割,因此先将nginx用split分割,然后再存入pandas。

3. Pandas提供了IO工具可以将大文件分块读取,使用不同分块大小来读取再调用 pandas.concat 连接DataFrame

以上这篇python+pandas分析nginx日志的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django框架搭建的简易图书信息网站案例

本文实例讲述了Django框架搭建的简易图书信息网站。分享给大家供大家参考,具体如下: 创建Django项目,将数据库改为mysql,修改项目的urls.py文件 创建一个新应用,在应用...

python连接MySQL数据库实例分析

python连接MySQL数据库实例分析

本文实例讲述了python连接MySQL数据库的方法。分享给大家供大家参考。具体实现方法如下: import MySQLdb conn = MySQLdb.connect(host=...

python3实现在二叉树中找出和为某一值的所有路径(推荐)

python3实现在二叉树中找出和为某一值的所有路径(推荐)

请写一个程序创建一棵二叉树,并按照一定规则,输出二叉树根节点到叶子节点的路径。 规则如下: 1、从最顶端的根结点,到最下面的叶子节点,计算路径通过的所有节点的和,如果与设置的某一值的相同...

Python加载带有注释的Json文件实例

由于json文件不支持注释,所以如果在json文件中标记了注释,则使用python中的json.dump()无法加载该json文件。 本文旨在解决当定义“//”为json注释时,如何正确...

python-opencv 将连续图片写成视频格式的方法

如下所示: import cv2 import os #图片路径 im_dir = '/home/suanfa/data/out/201708231503440' #输出视频路径...