Python爬虫实现全国失信被执行人名单查询功能示例

yipeiwu_com5年前Python爬虫

本文实例讲述了Python爬虫实现全国失信被执行人名单查询功能。分享给大家供大家参考,具体如下:

一、需求说明

利用百度的接口,实现一个全国失信被执行人名单查询功能。输入姓名,查询是否在全国失信被执行人名单中。

二、python实现

版本1:

# -*- coding:utf-8*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
import requests
time1=time.time()
import pandas as pd
import json
iname=[]
icard=[]
def person_executed(name):
  for i in range(0,30):
    try:
      url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \
      "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \
      "&cardNum=&" \
      "iname="+str(name)+ \
      "&areaName=" \
      "&pn="+str(i*10)+ \
      "&rn=10" \
      "&ie=utf-8&oe=utf-8&format=json"
      html=requests.get(url).content
      html_json=json.loads(html)
      html_data=html_json['data']
      for each in html_data:
        k=each['result']
        for each in k:
          print each['iname'],each['cardNum']
          iname.append(each['iname'])
          icard.append(each['cardNum'])
    except:
      pass
if __name__ == '__main__':
  name="郭**"
  person_executed(name)
  print len(iname)
  #####################将数据组织成数据框###########################
  data=pd.DataFrame({"name":iname,"IDCard":icard})
  #################数据框去重####################################
  data1=data.drop_duplicates()
  print data1
  print len(data1)
  #########################写出数据到excel#########################################
  pd.DataFrame.to_excel(data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False)
  time2=time.time()
  print u'ok,爬虫结束!'
  print u'总共耗时:'+str(time2-time1)+'s'

三、效果展示

"D:\Program Files\Python27\python.exe" D:/PycharmProjects/learn2017/全国失信被执行人查询.py
郭** 34122319790****5119
郭** 32032119881****2419
郭** 32032119881****2419
3
                IDCard name
0  34122319790****5119  郭**
1  32032119881****2419  郭**
2
ok,爬虫结束!
总共耗时:7.72000002861s
Process finished with exit code 0

版本2:

# -*- coding:utf-8*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
import requests
time1=time.time()
import pandas as pd
import json
iname=[]
icard=[]
courtName=[]
areaName=[]
caseCode=[]
duty=[]
performance=[]
disruptTypeName=[]
publishDate=[]
def person_executed(name):
  for i in range(0,30):
    try:
      url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \
      "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \
      "&cardNum=&" \
      "iname="+str(name)+ \
      "&areaName=" \
      "&pn="+str(i*10)+ \
      "&rn=10" \
      "&ie=utf-8&oe=utf-8&format=json"
      html=requests.get(url).content
      html_json=json.loads(html)
      html_data=html_json['data']
      for each in html_data:
        k=each['result']
        for each in k:
          print each['iname'],each['cardNum'],each['courtName'],each['areaName'],each['caseCode'],each['duty'],each['performance'],each['disruptTypeName'],each['publishDate']
          iname.append(each['iname'])
          icard.append(each['cardNum'])
          courtName.append(each['courtName'])
          areaName.append(each['areaName'])
          caseCode.append(each['caseCode'])
          duty.append(each['duty'])
          performance.append(each['performance'])
          disruptTypeName.append(each['disruptTypeName'])
          publishDate.append(each['publishDate'])
    except:
      pass
if __name__ == '__main__':
  name="郭**"
  person_executed(name)
  print len(iname)
  #####################将数据组织成数据框###########################
  # data=pd.DataFrame({"name":iname,"IDCard":icard})
  detail_data=pd.DataFrame({"name":iname,"IDCard":icard,"courtName":courtName,"areaName":areaName,"caseCode":caseCode,"duty":duty,"performance":performance,\
               "disruptTypeName":disruptTypeName,"publishDate":publishDate})
  #################数据框去重####################################
  # data1=data.drop_duplicates()
  # print data1
  # print len(data1)
  detail_data1=detail_data.drop_duplicates()
  # print detail_data1
  # print len(detail_data1)
  #########################写出数据到excel#########################################
  pd.DataFrame.to_excel(detail_data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False)
  time2=time.time()
  print u'ok,爬虫结束!'
  print u'总共耗时:'+str(time2-time1)+'s'

更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

python打造爬虫代理池过程解析

最近在使用爬虫爬取数据时,经常会返回403代码,大致意思是该IP访问过于频繁,被限制访问。限制IP访问网站最常用的反爬手段了,其实破解也很容易,就是在爬取网站是使用代理即可,这个IP被限...

玩转python爬虫之cookie使用方法

玩转python爬虫之cookie使用方法

之前一篇文章我们学习了爬虫的异常处理问题,那么接下来我们一起来看一下Cookie的使用。 为什么要使用Cookie呢? Cookie,指某些网站为了辨别用户身份、进行session跟踪而...

python书籍信息爬虫实例

python书籍信息爬虫示例,供大家参考,具体内容如下 背景说明 需要收集一些书籍信息,以豆瓣书籍条目作为源,得到一些有效书籍信息,并保存到本地数据库。 获取书籍分类标签 具体可参考这个...

python抓取网页内容示例分享

复制代码 代码如下:import socketdef open_tcp_socket(remotehost,servicename):    s=socke...

Python利用Scrapy框架爬取豆瓣电影示例

Python利用Scrapy框架爬取豆瓣电影示例

本文实例讲述了Python利用Scrapy框架爬取豆瓣电影。分享给大家供大家参考,具体如下: 1、概念 Scrapy是一个为了爬取网站数据,提取结构性数据而编写的应用框架。 可以应用在包...