Python爬虫实现全国失信被执行人名单查询功能示例

yipeiwu_com6年前Python爬虫

本文实例讲述了Python爬虫实现全国失信被执行人名单查询功能。分享给大家供大家参考,具体如下:

一、需求说明

利用百度的接口,实现一个全国失信被执行人名单查询功能。输入姓名,查询是否在全国失信被执行人名单中。

二、python实现

版本1:

# -*- coding:utf-8*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
import requests
time1=time.time()
import pandas as pd
import json
iname=[]
icard=[]
def person_executed(name):
  for i in range(0,30):
    try:
      url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \
      "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \
      "&cardNum=&" \
      "iname="+str(name)+ \
      "&areaName=" \
      "&pn="+str(i*10)+ \
      "&rn=10" \
      "&ie=utf-8&oe=utf-8&format=json"
      html=requests.get(url).content
      html_json=json.loads(html)
      html_data=html_json['data']
      for each in html_data:
        k=each['result']
        for each in k:
          print each['iname'],each['cardNum']
          iname.append(each['iname'])
          icard.append(each['cardNum'])
    except:
      pass
if __name__ == '__main__':
  name="郭**"
  person_executed(name)
  print len(iname)
  #####################将数据组织成数据框###########################
  data=pd.DataFrame({"name":iname,"IDCard":icard})
  #################数据框去重####################################
  data1=data.drop_duplicates()
  print data1
  print len(data1)
  #########################写出数据到excel#########################################
  pd.DataFrame.to_excel(data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False)
  time2=time.time()
  print u'ok,爬虫结束!'
  print u'总共耗时:'+str(time2-time1)+'s'

三、效果展示

"D:\Program Files\Python27\python.exe" D:/PycharmProjects/learn2017/全国失信被执行人查询.py
郭** 34122319790****5119
郭** 32032119881****2419
郭** 32032119881****2419
3
                IDCard name
0  34122319790****5119  郭**
1  32032119881****2419  郭**
2
ok,爬虫结束!
总共耗时:7.72000002861s
Process finished with exit code 0

版本2:

# -*- coding:utf-8*-
import sys
reload(sys)
sys.setdefaultencoding('utf-8')
import time
import requests
time1=time.time()
import pandas as pd
import json
iname=[]
icard=[]
courtName=[]
areaName=[]
caseCode=[]
duty=[]
performance=[]
disruptTypeName=[]
publishDate=[]
def person_executed(name):
  for i in range(0,30):
    try:
      url="https://sp0.baidu.com/8aQDcjqpAAV3otqbppnN2DJv/api.php?resource_id=6899" \
      "&query=%E5%A4%B1%E4%BF%A1%E8%A2%AB%E6%89%A7%E8%A1%8C%E4%BA%BA%E5%90%8D%E5%8D%95" \
      "&cardNum=&" \
      "iname="+str(name)+ \
      "&areaName=" \
      "&pn="+str(i*10)+ \
      "&rn=10" \
      "&ie=utf-8&oe=utf-8&format=json"
      html=requests.get(url).content
      html_json=json.loads(html)
      html_data=html_json['data']
      for each in html_data:
        k=each['result']
        for each in k:
          print each['iname'],each['cardNum'],each['courtName'],each['areaName'],each['caseCode'],each['duty'],each['performance'],each['disruptTypeName'],each['publishDate']
          iname.append(each['iname'])
          icard.append(each['cardNum'])
          courtName.append(each['courtName'])
          areaName.append(each['areaName'])
          caseCode.append(each['caseCode'])
          duty.append(each['duty'])
          performance.append(each['performance'])
          disruptTypeName.append(each['disruptTypeName'])
          publishDate.append(each['publishDate'])
    except:
      pass
if __name__ == '__main__':
  name="郭**"
  person_executed(name)
  print len(iname)
  #####################将数据组织成数据框###########################
  # data=pd.DataFrame({"name":iname,"IDCard":icard})
  detail_data=pd.DataFrame({"name":iname,"IDCard":icard,"courtName":courtName,"areaName":areaName,"caseCode":caseCode,"duty":duty,"performance":performance,\
               "disruptTypeName":disruptTypeName,"publishDate":publishDate})
  #################数据框去重####################################
  # data1=data.drop_duplicates()
  # print data1
  # print len(data1)
  detail_data1=detail_data.drop_duplicates()
  # print detail_data1
  # print len(detail_data1)
  #########################写出数据到excel#########################################
  pd.DataFrame.to_excel(detail_data1,"F:\\iname_icard_query.xlsx",header=True,encoding='gbk',index=False)
  time2=time.time()
  print u'ok,爬虫结束!'
  print u'总共耗时:'+str(time2-time1)+'s'

更多关于Python相关内容可查看本站专题:《Python Socket编程技巧总结》、《Python正则表达式用法总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python3简单爬虫抓取网页图片代码实例

现在网上有很多python2写的爬虫抓取网页图片的实例,但不适用新手(新手都使用python3环境,不兼容python2), 所以我用Python3的语法写了一个简单抓取网页图片的实例...

python爬虫 正则表达式使用技巧及爬取个人博客的实例讲解

python爬虫 正则表达式使用技巧及爬取个人博客的实例讲解

这篇博客是自己《数据挖掘与分析》课程讲到正则表达式爬虫的相关内容,主要简单介绍Python正则表达式爬虫,同时讲述常见的正则表达式分析方法,最后通过实例爬取作者的个人博客网站。希望这篇基...

Python爬虫实现抓取京东店铺信息及下载图片功能示例

本文实例讲述了Python爬虫实现抓取京东店铺信息及下载图片功能。分享给大家供大家参考,具体如下: 这个是抓取信息的 from bs4 import BeautifulSoup im...

python编写简单爬虫资料汇总

python编写简单爬虫资料汇总

  爬虫真是一件有意思的事儿啊,之前写过爬虫,用的是urllib2、BeautifulSoup实现简单爬虫,scrapy也有实现过。最近想更好的学习爬虫,那么就尽可能的做记录吧。这篇博客...

python爬虫 2019中国好声音评论爬取过程解析

python爬虫 2019中国好声音评论爬取过程解析

2019中国好声音火热开播,作为一名“假粉丝”,这一季每一期都刷过了,尤其刚播出的第六期开始正式的battle。视频视频看完了,那看下大家都是怎样评论的。 1.网页分析部分 本文爬取的...