python 读取txt,json和hdf5文件的实例

yipeiwu_com6年前Python基础

一.python读取txt文件

最简单的open函数:

# -*- coding: utf-8 -*-
with open("test.txt","r",encoding="gbk",errors='ignore') as f:
 print(f.read())

这里用open函数读取了一个txt文件,”encoding”表明了读取格式是“gbk”,还可以忽略错误编码。

另外,使用with语句操作文件IO是个好习惯,省去了每次打开都要close()。

二.python读取json文件

简单的test.json文件如下:

{
 "glossary": {
 "title": "example glossary",
 "GlossDiv": {
  "title": "S",
  "GlossList": {
  "GlossEntry": {
   "ID": "SGML",
   "SortAs": "SGML",
   "GlossTerm": "Standard Generalized Markup Language",
   "Acronym": "SGML",
   "Abbrev": "ISO 8879:1986",
   "GlossDef": {
   "para": "A meta-markup language, used to create markup languages such as DocBook.",
   "GlossSeeAlso": ["GML", "XML"]
   },
   "GlossSee": "markup"
  }
  }
 }
 }
}

这里需要用python的json模块处理解析:

import json
data = json.load(open('example.json'))
print(type(data))
print(data)

打印如下:

<class 'dict'>
{'glossary': {'title': 'example glossary', 'GlossDiv': {'title': 'S', 'GlossList': {'GlossEntry': {'ID': 'SGML', 'SortAs': 'SGML', 'GlossTerm': 'Standard Generalized Markup Language', 'Acronym': 'SGML', 'Abbrev': 'ISO 8879:1986', 'GlossDef': {'para': 'A meta-markup language, used to create markup languages such as DocBook.', 'GlossSeeAlso': ['GML', 'XML']}, 'GlossSee': 'markup'}}}}}

可见json.load()函数返回值是dict,json数据现在就成了一个网状的Python字典。

接下来我们就可以用标准的键检索来进行解读,比如:

print(data['glossary']['GlossDiv']['GlossList'])

打印结果如下:

{'GlossEntry': {'ID': 'SGML', 'SortAs': 'SGML', 'GlossTerm': 'Standard Generalized Markup Language', 'Acronym': 'SGML', 'Abbrev': 'ISO 8879:1986', 'GlossDef': {'para': 'A meta-markup language, used to create markup languages such as DocBook.', 'GlossSeeAlso': ['GML', 'XML']}, 'GlossSee': 'markup'}}

三.python 读取HFD5文件

HDF5 是一种层次化的格式(hierarchical format),经常用于存储复杂的科学数据。例如 MATLAB 就是用这个格式来存储数据。在存储带有关联的元数据(metadata)的复杂层次化数据的时候,这个格式非常有用,例如计算机模拟实验的运算结果等等。

与HDF5 相关的主要概念有以下几个:

文件 file: 层次化数据的容器,相当于树根('root' for tree)

组 group: 树的一个节点(node for a tree)

数据集 dataset: 数值数据的数组,可以非常非常大

属性 attribute: 提供额外信息的小块的元数据

# -*- coding: utf-8 -*-
#创建hdf5文件
import datetime
import os
import h5py
import numpy as np
imgData = np.zeros((30,3,128,256))
if not os.path.exists('test.hdf5'):
 with h5py.File('test.hdf5') as f:
 f['data'] = imgData   #将数据写入文件的主键data下面
 f['labels'] = range(100) 

创建完成之后读取:

import datetime
import os
import h5py
import numpy as np
with h5py.File('test.hdf5') as f:
 print(f)
 print(f.keys)

除了上述方法,pandas还提供一个直接读取h5文件的函数:

pd.HDFStore
import datetime
import os
import h5py
import numpy as np
import pandas as pd
data = pd.HDFStore("dataset_log.h5")
print(type(data))

打印结果为:

<class 'pandas.io.pytables.HDFStore'>
Closing remaining open files:dataset_log.h5...done

以上这篇python 读取txt,json和hdf5文件的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现去除列表中重复元素的方法总结【7种方法】

这里首先给出来我很早之前写的一篇博客,Python实现去除列表中重复元素的方法小结【4种方法】,感兴趣的话可以去看看,今天是在实践过程中又积累了一些方法,这里一并总结放在这里。 由于内容...

浅析python协程相关概念

这篇文章是读者朋友的python协程的学习经验之谈,以下是全部内容: 协程的历史说来话长,要从生成器开始讲起。 如果你看过我之前的文章python奇遇记:迭代器和生成器 ,对生成器的概念...

Python正则表达式使用经典实例

下面列出Python正则表达式的几种匹配用法,具体内容如下所示: 此外,关于正则的一切http://deerchao.net/tutorials/regex/regex.htm 1....

Ubuntu 下 vim 搭建python 环境 配置

1. 安装完整的vim # apt-get install vim-gnome 2. 安装ctags,ctags用于支持taglist,必需! # apt-get instal...

Python字典操作详细介绍及字典内建方法分享

创建 方法一: >>> dict1 = {} >>> dict2 = {'name': 'earth', 'port': 80} >>...