python绘制中国大陆人口热力图

yipeiwu_com5年前Python基础

这篇文章给出了如何绘制中国人口密度图,但是运行存在一些问题,我在一些地方进行了修改。

本人使用的IDE是anaconda,因此事先在anaconda prompt 中安装Basemap包

conda install Basemap

新建文档,导入需要的包

import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.colors import rgb2hex
import numpy as np
import pandas as pd

Basemap中不包括中国省界,需要在下面网站下载中国省界,点击Shapefile下载。

生成中国大陆省界图片。

plt.figure(figsize=(16,8))
m = Basemap(
 llcrnrlon=77,
 llcrnrlat=14,
 urcrnrlon=140,
 urcrnrlat=51,
 projection='lcc',
 lat_1=33,
 lat_2=45,
 lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()
 
m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)

去国家统计局网站下载人口各省,只需保留地区和总人口即可,保存为csv格式并改名为pop.csv。

读取数据,储存为dataframe格式,删去地名之中的空格,并设置地名为dataframe的index。

df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
 i = i.replace(" ","")
 new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)

将Basemap中的地区与我们下载的csv中的人口数据对应起来,建立字典。注意,Basemap中的地名与csv文件中的地名并不完全一样,需要进行一些处理。

provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000
 
for each_province in provinces:
 province_name = each_province['NL_NAME_1']
 p = province_name.split('|')
 if len(p) > 1:
  s = p[1]
 else:
  s = p[0]
 s = s[:2]
 if s == '黑龍':
  s = '黑龙江'
 if s == '内蒙':
  s = '内蒙古'
 statenames.append(s)
 pop = df['人口数'][s]
 colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]

最后画出图片即可

ax = plt.gca()
for nshape, seg in enumerate(m.states):
 color = rgb2hex(colors[statenames[nshape]])
 poly = Polygon(seg, facecolor=color, edgecolor=color)
 ax.add_patch(poly)
 
plt.show()

完整代码如下

# -*- coding: utf-8 -*-
 
import matplotlib.pyplot as plt
from mpl_toolkits.basemap import Basemap
from matplotlib.patches import Polygon
from matplotlib.colors import rgb2hex
import numpy as np
import pandas as pd
 
plt.figure(figsize=(16,8))
m = Basemap(
 llcrnrlon=77,
 llcrnrlat=14,
 urcrnrlon=140,
 urcrnrlat=51,
 projection='lcc',
 lat_1=33,
 lat_2=45,
 lon_0=100
)
m.drawcountries(linewidth=1.5)
m.drawcoastlines()
 
m.readshapefile('gadm36_CHN_shp/gadm36_CHN_1', 'states', drawbounds=True)
 
df = pd.read_csv('pop.csv')
new_index_list = []
for i in df["地区"]:
 i = i.replace(" ","")
 new_index_list.append(i)
new_index = {"region": new_index_list}
new_index = pd.DataFrame(new_index)
df = pd.concat([df,new_index], axis=1)
df = df.drop(["地区"], axis=1)
df.set_index("region", inplace=True)
 
provinces = m.states_info
statenames=[]
colors = {}
cmap = plt.cm.YlOrRd
vmax = 100000000
vmin = 3000000
 
for each_province in provinces:
 province_name = each_province['NL_NAME_1']
 p = province_name.split('|')
 if len(p) > 1:
  s = p[1]
 else:
  s = p[0]
 s = s[:2]
 if s == '黑龍':
  s = '黑龙江'
 if s == '内蒙':
  s = '内蒙古'
 statenames.append(s)
 pop = df['人口数'][s]
 colors[s] = cmap(np.sqrt((pop - vmin) / (vmax - vmin)))[:3]
 
ax = plt.gca()
for nshape, seg in enumerate(m.states):
 color = rgb2hex(colors[statenames[nshape]])
 poly = Polygon(seg, facecolor=color, edgecolor=color)
 ax.add_patch(poly)
 
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django实现WebSSH操作物理机或虚拟机的方法

Django实现WebSSH操作物理机或虚拟机的方法

我想用它替换掉xshell、crt之类的工具 WebSSH操作物理机或虚拟机 上篇文章给大家介绍详解基于django实现的webssh简单例子,有小伙伴说咖啡哥,我们现在还没有用上Kub...

Python判断列表是否已排序的各种方法及其性能分析

声明 本文基于Python2.7语言,给出判断列表是否已排序的多种方法,并在作者的Windows XP主机(Pentium G630 2.7GHz主频2GB内存)上对比和分析其性能表现...

Python tkinter实现图片标注功能(完整代码)

.tkinter tkinter是Python下面向tk的图形界面接口库,可以方便地进行图形界面设计和交互操作编程。tkinter的优点是简单易用、与Python的结合度好。tkinte...

Python字符串的常见操作实例小结

本文实例讲述了Python字符串的常见操作。分享给大家供大家参考,具体如下: 如果我们想要查看以下功能:help(mystr .find) 1.find 例: mystr="hell...

Python打印输出数组中全部元素

学习Python的人都知道数组是最常用的的数据类型,为了保证程序的正确性,需要调试程序。 因此,需要在程序中控制台中打印数组的全部元素,如果数组的容量较小,例如 只含有10个元素,采用p...