Pandas 合并多个Dataframe(merge,concat)的方法

yipeiwu_com5年前Python基础

在数据处理的时候,尤其在搞大数据竞赛的时候经常会遇到一个问题就是,多个表单的合并问题,比如一个表单有user_id和age这两个字段,另一个表单有user_id和sex这两个字段,要把这两个表合并成只有user_id、age、sex三个字段的表怎么办的,普通的拼接是做不到的,因为user_id每一行之间不是对应的,像拼积木似的横向拼接肯定是不行的。

pandas中有个merge函数可以做到这个实用的功能,merge这个词会点SQL语言的应该都不陌生。

下面说说merge函数怎么用:

df = pd.merge(df1, df2, how='left', on='user_id') 

用法很简单,说一下后两个参数就可以了,how=""参数表示以哪个表的key为准,上面的how="left"表示以表df1为准,而key也就是on=""的参数

how="left"就是说,保留user_id字段的全部信息,不增加也不减少,但是拼接的时候只把df2表中的与df1中user_id字段交集的部分合并上就可以了,如果df2中出现了某个user_id在df1中没有出现,就抛弃掉这个样本不作处理。

如果要进行多key合并:

df = pd.merge(df1, df2, how='left', on=['user_id','sku_id']) 

但是如果想仅进行简单的“拼接”而不是合并呢,要使用concat函数:

df = pd.concat( [df_user, dummies_sex, dummies_age, dummies_level], axis=1 ) 

这样可以保留这些表单的全部信息,参数axis=1表示列拼接,axis=0表示行拼接。

要保证背个表单的行数是相同的,并且每一行对应的key也是相同的,列拼接才变得有意义

以上这篇Pandas 合并多个Dataframe(merge,concat)的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中防止sql注入的方法详解

前言 大家应该都知道现在web漏洞之首莫过于sql了,不管使用哪种语言进行web后端开发,只要使用了关系型数据库,可能都会遇到sql注入攻击问题。那么在Python web开发的过程中s...

Python实现的简单万年历例子分享

复制代码 代码如下:#!/usr/bin/env python2#-*- coding:utf-8 -*-__author__ = 'jalright' """使用python实现万年历...

Python实现Sqlite将字段当做索引进行查询的方法

本文实例讲述了Python实现Sqlite将字段当做索引进行查询的方法。分享给大家供大家参考,具体如下: 默认从sqlite中获取到的数据是数字索引的, 在开发阶段经常有修改数据库所以显...

Python中的数学运算操作符使用进阶

Python中对象的行为是由它的类型 (Type) 决定的。所谓类型就是支持某些特定的操作。数字对象在任何编程语言中都是基础元素,支持加、减、乘、除等数学操作。 Python的数字对象有...

用python读写excel的方法

本文实例讲述了用python读写excel的方法。分享给大家供大家参考。具体如下: 最近需要从多个excel表里面用各种方式整理一些数据,虽然说原来用过java做这类事情,但是由于最近在...