python pandas中对Series数据进行轴向连接的实例

yipeiwu_com6年前Python基础

有时候我们想要的数据合并结果是数据的轴向连接,在pandas中这可以通过concat来实现。操作的对象通常是Series。

Ipython中的交互代码如下:

In [17]: from pandas import Series,DataFrame
In [18]: series1 = Series(range(2),index = ['a','b'])
In [19]: series2 = Series(range(3),index = ['c','d','e'])
In [20]: series3 = Series(range(2),index = ['f','g'])
In [21]: import pandas as pd

进行三个Series的连接:

In [22]: pd.concat([series1,series2,series3])
Out[22]: 
a 0
b 1
c 0
d 1
e 2
f 0
g 1
dtype: int64

默认情况下,pandas执行的是按照axis=0进行连接。如果进行axis=1的连接,结果如下:

In [24]: S1=pd.concat([series1,series2,series3],axis=1)
In [25]: S1
Out[25]: 
 0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 0.0 NaN
d NaN 1.0 NaN
e NaN 2.0 NaN
f NaN NaN 0.0
g NaN NaN 1.0
In [26]: type(S1)
Out[26]: pandas.core.frame.DataFrame

结果是一个DataFrame,回头再看一下前面的Series的连接后的最终类型:

In [27]: type(pd.concat([series1,series2,series3]))
Out[27]: pandas.core.series.Series

两种方式的结果并不相同,一个结果是Series,另一个则是DataFrame。

In [29]: series3 = Series(range(2),index = ['f','e'])
In [30]: pd.concat([series1,series2,series3])
Out[30]: 
a 0
b 1
c 0
d 1
e 2
f 0
e 1
dtype: int64

从上面的一点测试中可以看出,concat的操作仅仅是单纯的连接,并没有涉及到数据的整合。如果想要进行整合,还是使用merge的方法。

以上这篇python pandas中对Series数据进行轴向连接的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 文件管理实例详解

本文实例讲述了Python 文件管理的方法。分享给大家供大家参考,具体如下: 一、Python中的文件管理 文件管理是很多应用程序的基本功能和重要组成部分。Python可以使文件管理极其...

使用python进行拆分大文件的方法

使用python进行拆分大文件的方法

python按指定行数把大文件进行拆分 如图大文件有7000多万行,大小为16G 需要拆分成多个200万行的小文件 代码如下: # -*- coding:utf-8 -*- fro...

利用python将json数据转换为csv格式的方法

假设.json文件中存储的数据为: {"type": "Point", "link": "http://www.dianping.com/newhotel/22416995", "c...

详解使用 pyenv 管理多个版本 python 环境

 随着同时开发的项目越来越多,需要不停的在各个不同版本的 python 环境之间切换,所以想到了pyenv。以前一直使用的 virtualenv只能管理同一个 python 版...

Python装饰器模式定义与用法分析

Python装饰器模式定义与用法分析

本文实例讲述了Python装饰器模式定义与用法。分享给大家供大家参考,具体如下: 装饰器模式定义:动态地给一个对象添加一些额外的职责。 在Python中Decorator mode可以按...