python pandas中对Series数据进行轴向连接的实例

yipeiwu_com6年前Python基础

有时候我们想要的数据合并结果是数据的轴向连接,在pandas中这可以通过concat来实现。操作的对象通常是Series。

Ipython中的交互代码如下:

In [17]: from pandas import Series,DataFrame
In [18]: series1 = Series(range(2),index = ['a','b'])
In [19]: series2 = Series(range(3),index = ['c','d','e'])
In [20]: series3 = Series(range(2),index = ['f','g'])
In [21]: import pandas as pd

进行三个Series的连接:

In [22]: pd.concat([series1,series2,series3])
Out[22]: 
a 0
b 1
c 0
d 1
e 2
f 0
g 1
dtype: int64

默认情况下,pandas执行的是按照axis=0进行连接。如果进行axis=1的连接,结果如下:

In [24]: S1=pd.concat([series1,series2,series3],axis=1)
In [25]: S1
Out[25]: 
 0 1 2
a 0.0 NaN NaN
b 1.0 NaN NaN
c NaN 0.0 NaN
d NaN 1.0 NaN
e NaN 2.0 NaN
f NaN NaN 0.0
g NaN NaN 1.0
In [26]: type(S1)
Out[26]: pandas.core.frame.DataFrame

结果是一个DataFrame,回头再看一下前面的Series的连接后的最终类型:

In [27]: type(pd.concat([series1,series2,series3]))
Out[27]: pandas.core.series.Series

两种方式的结果并不相同,一个结果是Series,另一个则是DataFrame。

In [29]: series3 = Series(range(2),index = ['f','e'])
In [30]: pd.concat([series1,series2,series3])
Out[30]: 
a 0
b 1
c 0
d 1
e 2
f 0
e 1
dtype: int64

从上面的一点测试中可以看出,concat的操作仅仅是单纯的连接,并没有涉及到数据的整合。如果想要进行整合,还是使用merge的方法。

以上这篇python pandas中对Series数据进行轴向连接的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python使用指定字符长度切分数据示例

处理思路 笔者在学习时被要求在Python中使用指定字符长度切分数据。 如,string类型的字符串film_type = ‘都市浪漫爱情喜剧',已知电影类型都是两个中文字符组成,要求切...

python3字符串操作总结

介绍Python常见的字符串处理方式 字符串截取 >>>s = 'hello' >>>s[0:3] 'he' >>>s[:...

python matplotlib折线图样式实现过程

python matplotlib折线图样式实现过程

这篇文章主要介绍了python matplotlib折线图样式实现过程,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一:简单的折线图...

Python常见加密模块用法分析【MD5,sha,crypt模块】

本文实例讲述了Python常见加密模块用法。分享给大家供大家参考,具体如下: 1. md5模块 md5.new([arg])     返回一个md...

python中ASCII码和字符的转换方法

将ASCII字符转换为对应的数值即‘a'-->65,使用ord函数,ord('a') 反之,使用chr函数,将数值转换为对应的ASCII字符,chr(65) 可以同时使用这两个函数...