解决pandas使用read_csv()读取文件遇到的问题

yipeiwu_com6年前Python基础

如下:

数据文件:

上海机场 (sh600009)
24.11 3.58
东风汽车 (sh600006) 74.25 1.74
中国国贸 (sh600007) 26.38 2.66
包钢股份 (sh600010) 61.01 2.35
武钢股份 (sh600005) 75.85 1.3
浦发银行 (sh600000) 6.65 0.96

在使用read_csv() API读取CSV文件时求取某一列数据比较大小时,

df=pd.read_csv(output_file,encoding='gb2312',names=['a','b','c'])
df.b>20

报错

TypeError:'>'not supported between instances of 'str' and 'int'

从返回的错误信息可知应该是数据类型错误,读回来的是‘str'

in : df.dtypes
out:
 a object
 b object
 c object
 dtype: object

由此可知 df.b 类型是 object

查阅read_csv()文档 配置:

dtype : Type name or dict of column -> type, default None
Data type for data or columns. E.g. {'a': np.float64, 'b': np.int32} (unsupported with engine='python'). Use str or object to preserve and not interpret dtype.

New in version 0.20.0: support for the Python parser.

可知默认使用‘str'或‘object'保存

因此在读取时只需要修改 'dtype' 配置就可以

df=pd.read_csv(output_file,encoding='gb2312',names=['a','b','c'],dtype={'b':np.folat64})

以上这篇解决pandas使用read_csv()读取文件遇到的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python利用多进程将大量数据放入有限内存的教程

Python利用多进程将大量数据放入有限内存的教程

简介 这是一篇有关如何将大量的数据放入有限的内存中的简略教程。 与客户工作时,有时会发现他们的数据库实际上只是一个csv或Excel文件仓库,你只能将就着用,经常需要在不更新他们的数据仓...

python模块常用用法实例详解

1、time模块(※※※※) import time #导入时间模块 print(time.time()) #返回当前时间的时间戳,可用于计算程序运行时间 print(time.l...

Python实现多态、协议和鸭子类型的代码详解

多态 问起面向对象的三大特性,几乎每个人都能对答如流:封装、继承、多态。今天我们就要来说一说 Python 中的多态。 所谓多态:就是指一个类实例的相同方法在不同情形有不同表现形式。多态...

Python selenium 自动化脚本打包成一个exe文件(推荐)

Python selenium 自动化脚本打包成一个exe文件(推荐)

目标 打包Python selenium 自动化脚本(如下run.py文件)为exe执行文件,使之可以直接在未安装python环境的windows下运行 run.py文件源码: 文件路径...

Python3.4实现从HTTP代理网站批量获取代理并筛选的方法示例

本文实例讲述了Python3.4实现从HTTP代理网站批量获取代理并筛选的方法。分享给大家供大家参考,具体如下: 最近在写爬虫,苦于不采用代理的情况下,默认的IP不出几分钟就被封了,故而...