将tensorflow的ckpt模型存储为npy的实例

yipeiwu_com6年前Python基础

实例如下所示:

#coding=gbk
import numpy as np
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow

checkpoint_path='model.ckpt-5000'#your ckpt path
reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map=reader.get_variable_to_shape_map()

alexnet={}
alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8']
add_info = ['weights','biases']

alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]}


for key in var_to_shape_map:
 #print ("tensor_name",key)

 str_name = key
 # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor
 if str_name.find('Adam') > -1:
  continue

 print('tensor_name:' , str_name)

 if str_name.find('/') > -1:
  names = str_name.split('/')
  # first layer name and weight, bias
  layer_name = names[0]
  layer_add_info = names[1]
 else:
  layer_name = str_name
  layer_add_info = None

 if layer_add_info == 'weights':
  alexnet[layer_name][0]=reader.get_tensor(key)
 elif layer_add_info == 'biases':
  alexnet[layer_name][1] = reader.get_tensor(key)
 else:
  alexnet[layer_name] = reader.get_tensor(key)

# save npy
np.save('alexnet_pointing04.npy',alexnet)
print('save npy over...')
#print(alexnet['conv1'][0].shape)
#print(alexnet['conv1'][1].shape)

以上这篇将tensorflow的ckpt模型存储为npy的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python cx_freeze打包工具处理问题思路及解决办法

以下是在使用cx_freeze过程中遇到的问题及解决办法(Win7) 1.问题描述:运行exe,启动无数个主程序,导致系统无法使用     原因:在程序中使用了multiprocess...

详解如何减少python内存的消耗

详解如何减少python内存的消耗

Python 打算删除大量涉及像C和C++语言那样的复杂内存管理。当对象离开范围,就会被自动垃圾收集器回收。然而,对于由 Python 开发的大型且长期运行的系统来说,内存管理是不容小觑...

python中for循环输出列表索引与对应的值方法

python中for循环输出列表索引与对应的值方法

如下所示: list = [‘a','b','c'] 想用for循环输出list的元素以及对应的索引。 代码及结果如下: 以上这篇python中for循环输出列表索引与对应的值...

python 字符串转列表 list 出现\ufeff的解决方法

如下所示: #文件内容 lisi lock = open("lock_info.txt", "r+",encoding="utf-8") lock_line = lock.readl...

解决python 输出是省略号的问题

这个问题非常非常重要,搞了一晚上都没解决好,但是真的很简单很简单, 如果你也 是用的numpy array, 如果你也想得到输出矩阵的全部内容,而不是省略形式, [[ 0.10284...