将tensorflow的ckpt模型存储为npy的实例

yipeiwu_com5年前Python基础

实例如下所示:

#coding=gbk
import numpy as np
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow

checkpoint_path='model.ckpt-5000'#your ckpt path
reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map=reader.get_variable_to_shape_map()

alexnet={}
alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8']
add_info = ['weights','biases']

alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]}


for key in var_to_shape_map:
 #print ("tensor_name",key)

 str_name = key
 # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor
 if str_name.find('Adam') > -1:
  continue

 print('tensor_name:' , str_name)

 if str_name.find('/') > -1:
  names = str_name.split('/')
  # first layer name and weight, bias
  layer_name = names[0]
  layer_add_info = names[1]
 else:
  layer_name = str_name
  layer_add_info = None

 if layer_add_info == 'weights':
  alexnet[layer_name][0]=reader.get_tensor(key)
 elif layer_add_info == 'biases':
  alexnet[layer_name][1] = reader.get_tensor(key)
 else:
  alexnet[layer_name] = reader.get_tensor(key)

# save npy
np.save('alexnet_pointing04.npy',alexnet)
print('save npy over...')
#print(alexnet['conv1'][0].shape)
#print(alexnet['conv1'][1].shape)

以上这篇将tensorflow的ckpt模型存储为npy的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 使用 PyMysql、DBUtils 创建连接池提升性能

Python 使用 PyMysql、DBUtils 创建连接池提升性能

Python 编程中可以使用 PyMysql 进行数据库的连接及诸如查询/插入/更新等操作,但是每次连接 MySQL 数据库请求时,都是独立的去请求访问,相当浪费资源,而且访问数量达到一...

Python线程下使用锁的技巧分享

使用诸如Lock、RLock、Semphore之类的锁原语时,必须多加小心,锁的错误使用很容易导致死锁或相互竞争。依赖锁的代码应该保证当出现异常时可以正常的释放锁。 典型代码如下:...

python3.3实现乘法表示例

python3.3实现乘法表示例

复制代码 代码如下:from StringHelper  import PadLeft  for x in range(1,10):   ...

朴素贝叶斯分类算法原理与Python实现与使用方法案例

朴素贝叶斯分类算法原理与Python实现与使用方法案例

本文实例讲述了朴素贝叶斯分类算法原理与Python实现与使用方法。分享给大家供大家参考,具体如下: 朴素贝叶斯分类算法 1、朴素贝叶斯分类算法原理 1.1、概述 贝叶斯分类算法是一大类分...

Python排序搜索基本算法之归并排序实例分析

Python排序搜索基本算法之归并排序实例分析

本文实例讲述了Python排序搜索基本算法之归并排序。分享给大家供大家参考,具体如下: 归并排序最令人兴奋的特点是:不论输入是什么样的,它对N个元素的序列排序所用时间与NlogN成正比。...