将tensorflow的ckpt模型存储为npy的实例

yipeiwu_com5年前Python基础

实例如下所示:

#coding=gbk
import numpy as np
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow

checkpoint_path='model.ckpt-5000'#your ckpt path
reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map=reader.get_variable_to_shape_map()

alexnet={}
alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8']
add_info = ['weights','biases']

alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]}


for key in var_to_shape_map:
 #print ("tensor_name",key)

 str_name = key
 # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor
 if str_name.find('Adam') > -1:
  continue

 print('tensor_name:' , str_name)

 if str_name.find('/') > -1:
  names = str_name.split('/')
  # first layer name and weight, bias
  layer_name = names[0]
  layer_add_info = names[1]
 else:
  layer_name = str_name
  layer_add_info = None

 if layer_add_info == 'weights':
  alexnet[layer_name][0]=reader.get_tensor(key)
 elif layer_add_info == 'biases':
  alexnet[layer_name][1] = reader.get_tensor(key)
 else:
  alexnet[layer_name] = reader.get_tensor(key)

# save npy
np.save('alexnet_pointing04.npy',alexnet)
print('save npy over...')
#print(alexnet['conv1'][0].shape)
#print(alexnet['conv1'][1].shape)

以上这篇将tensorflow的ckpt模型存储为npy的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Tensorflow实现酸奶销量预测分析

Tensorflow实现酸奶销量预测分析

本文实例为大家分享了Tensorflow酸奶销量预测分析的具体代码,供大家参考,具体内容如下 # coding:utf-8 # 酸奶成本为1元,利润为9元 # 预测少了相应的损失较大...

Python写的一个定时重跑获取数据库数据

Python写的一个定时重跑获取数据库数据

做大数据的童鞋经常会写定时任务跑数据,由于任务之间的依赖(一般都是下游依赖上游的数据产出),所以经常会导致数据获取失败,因为很多人发现数据失败后 都会去查看日志,然后手动去执行自己的任务...

解决python写入mysql中datetime类型遇到的问题

刚开始使用python,还不太熟练,遇到一个datetime数据类型的问题: 在mysql数据库中,有一个datetime类型的字段用于存储记录的日期时间值。python程序中有对应的一...

Python封装成可带参数的EXE安装包实例

最近有一个小项目,有如下的需求: 将某几个源码文件夹进行打包,文件夹内有py文件、dll文件、exe文件等各种文件类型 打包生成的安装包,在进行安装的时候,应该能够带有参数,对配置文件进...

python 寻找优化使成本函数最小的最优解的方法

今天来学习变量优化问题。寻找使成本函数最小的题解。适用于题解相互独立的情况,设计随机优化算法、爬山法、模拟退火算法、遗传算法。 优化问题的的精髓是:1、将题解转化为数字序列化,可以写出题...