将tensorflow的ckpt模型存储为npy的实例

yipeiwu_com6年前Python基础

实例如下所示:

#coding=gbk
import numpy as np
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow

checkpoint_path='model.ckpt-5000'#your ckpt path
reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map=reader.get_variable_to_shape_map()

alexnet={}
alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8']
add_info = ['weights','biases']

alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]}


for key in var_to_shape_map:
 #print ("tensor_name",key)

 str_name = key
 # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor
 if str_name.find('Adam') > -1:
  continue

 print('tensor_name:' , str_name)

 if str_name.find('/') > -1:
  names = str_name.split('/')
  # first layer name and weight, bias
  layer_name = names[0]
  layer_add_info = names[1]
 else:
  layer_name = str_name
  layer_add_info = None

 if layer_add_info == 'weights':
  alexnet[layer_name][0]=reader.get_tensor(key)
 elif layer_add_info == 'biases':
  alexnet[layer_name][1] = reader.get_tensor(key)
 else:
  alexnet[layer_name] = reader.get_tensor(key)

# save npy
np.save('alexnet_pointing04.npy',alexnet)
print('save npy over...')
#print(alexnet['conv1'][0].shape)
#print(alexnet['conv1'][1].shape)

以上这篇将tensorflow的ckpt模型存储为npy的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pandas:Series和DataFrame删除指定轴上数据的方法

如下所示: import numpy as np import pandas as pd from pandas import Series,DataFrame 一、drop方法:...

python3实现小球转动抽奖小游戏

python3实现小球转动抽奖小游戏

最近老师在讲 tkinter,所以我做了一个抽奖小游戏。 一、效果图 先上效果图。红色的小球会围绕蓝色小球做环形运动。我设置的四个角是奖品,其余的都是再接再厉。 二、方法 基于tkin...

Python 递归函数详解及实例

Python 递归函数详解及实例

Python 递归函数 如果一个函数体直接或者间接调用自己,那么这个函数就称为递归函数.也就是说,递归函数体的执行过程中可能会返回去再次调用该函数.在python里,递归函数不需要任何特...

pandas系列之DataFrame 行列数据筛选实例

pandas系列之DataFrame 行列数据筛选实例

一、对DataFrame的认知 DataFrame的本质是行(index)列(column)索引+多列数据。 为了简化理解,我们不妨换个思路… 现实中,为了简化对一件事物的描述,我们会...

TENSORFLOW变量作用域(VARIABLE SCOPE)

举例说明 TensorFlow中的变量一般就是模型的参数。当模型复杂的时候共享变量会无比复杂。 官网给了一个case,当创建两层卷积的过滤器时,每输入一次图片就会创建一次过滤器对应的变...