将tensorflow的ckpt模型存储为npy的实例

yipeiwu_com5年前Python基础

实例如下所示:

#coding=gbk
import numpy as np
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow

checkpoint_path='model.ckpt-5000'#your ckpt path
reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map=reader.get_variable_to_shape_map()

alexnet={}
alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8']
add_info = ['weights','biases']

alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]}


for key in var_to_shape_map:
 #print ("tensor_name",key)

 str_name = key
 # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor
 if str_name.find('Adam') > -1:
  continue

 print('tensor_name:' , str_name)

 if str_name.find('/') > -1:
  names = str_name.split('/')
  # first layer name and weight, bias
  layer_name = names[0]
  layer_add_info = names[1]
 else:
  layer_name = str_name
  layer_add_info = None

 if layer_add_info == 'weights':
  alexnet[layer_name][0]=reader.get_tensor(key)
 elif layer_add_info == 'biases':
  alexnet[layer_name][1] = reader.get_tensor(key)
 else:
  alexnet[layer_name] = reader.get_tensor(key)

# save npy
np.save('alexnet_pointing04.npy',alexnet)
print('save npy over...')
#print(alexnet['conv1'][0].shape)
#print(alexnet['conv1'][1].shape)

以上这篇将tensorflow的ckpt模型存储为npy的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python基础教程项目三之万能的XML

这个项目的名称与其叫做万能的XML不如叫做自动构建网站,根据一份XML文件,生成对应目录结构的网站,不过只有html还是太过于简单了,如果要是可以连带生成css那就比较强大了。这个有待后...

pytorch 实现在预训练模型的 input上增减通道

如何把imagenet预训练的模型,输入层的通道数随心所欲的修改,从而来适应自己的任务 #增加一个通道 w = layers[0].weight layers[0] = nn.Con...

twilio python自动拨打电话,播放自定义mp3音频的方法

twilio python自动拨打电话,播放自定义mp3音频的方法

有个小项目,需求是某事件发生时,给客户打电话,提醒客户。需要事先录制好一段音频,客户接通电话后,自动播放。 这里用到了twilio:https://www.twilio.com/ ,分享...

python入门前的第一课 python怎样入门

python入门前的第一课 python怎样入门

人工智能时代的到来,很多文章说这么一句:“不会python,就不要说自己是程序员”,这说的有点夸张了,但确实觉得目前python这个语言值得学习,而且会python是高薪程序员的必备技能...

浅谈numpy数组的几种排序方式

简单介绍 NumPy系统是Python的一种开源的数组计算扩展。这种工具可用来存储和处理大型矩阵,比Python自身的嵌套列表(nested list structure)结构要高效的多...