将tensorflow的ckpt模型存储为npy的实例

yipeiwu_com6年前Python基础

实例如下所示:

#coding=gbk
import numpy as np
import tensorflow as tf
from tensorflow.python import pywrap_tensorflow

checkpoint_path='model.ckpt-5000'#your ckpt path
reader=pywrap_tensorflow.NewCheckpointReader(checkpoint_path)
var_to_shape_map=reader.get_variable_to_shape_map()

alexnet={}
alexnet_layer = ['conv1','conv2','conv3','conv4','conv5','fc6','fc7','fc8']
add_info = ['weights','biases']

alexnet={'conv1':[[],[]],'conv2':[[],[]],'conv3':[[],[]],'conv4':[[],[]],'conv5':[[],[]],'fc6':[[],[]],'fc7':[[],[]],'fc8':[[],[]]}


for key in var_to_shape_map:
 #print ("tensor_name",key)

 str_name = key
 # 因为模型使用Adam算法优化的,在生成的ckpt中,有Adam后缀的tensor
 if str_name.find('Adam') > -1:
  continue

 print('tensor_name:' , str_name)

 if str_name.find('/') > -1:
  names = str_name.split('/')
  # first layer name and weight, bias
  layer_name = names[0]
  layer_add_info = names[1]
 else:
  layer_name = str_name
  layer_add_info = None

 if layer_add_info == 'weights':
  alexnet[layer_name][0]=reader.get_tensor(key)
 elif layer_add_info == 'biases':
  alexnet[layer_name][1] = reader.get_tensor(key)
 else:
  alexnet[layer_name] = reader.get_tensor(key)

# save npy
np.save('alexnet_pointing04.npy',alexnet)
print('save npy over...')
#print(alexnet['conv1'][0].shape)
#print(alexnet['conv1'][1].shape)

以上这篇将tensorflow的ckpt模型存储为npy的实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

wxPython中文教程入门实例

wxPython中文教程入门实例 wx.Window 是一个基类,许多构件从它继承。包括 wx.Frame 构件。可以在所有的子类中使用 wx.Window 的方法。 wxPython的...

用python与文件进行交互的方法

本文介绍了用python与文件进行交互的方法,分享给大家,具体如下: 一.文件处理 1.介绍 计算机系统:计算机硬件,操作系统,应用程序 应用程序无法直接操作硬件,通过操作系统来操作文...

Python Socket使用实例

Python在网络通讯方面功能强大,学习一下Socket通讯的基本方式 UDP通讯: Server: import socket port=8081 s=socket.socket(...

使用Python横向合并excel文件的实例

使用Python横向合并excel文件的实例

起因: 有一批数据需要每个月进行分析,数据存储在excel中,行标题一致,需要横向合并进行分析。 数据示意: 具有多个 代码: # -*- coding: utf-8 -*- "...

selenium + python 获取table数据的示例讲解

方法一: <code class="language-python">""" 根据table的id属性和table中的某一个元素定位其在table中的位置 table...