Python OpenCV处理图像之图像像素点操作

yipeiwu_com5年前Python基础

本文实例为大家分享了Python OpenCV图像像素点操作的具体代码,供大家参考,具体内容如下

0x01. 像素

有两种直接操作图片像素点的方法:

第一种办法就是将一张图片看成一个多维的list,例如对于一张图片im,想要操作第四行第四列的像素点就直接 im[3,3] 就可以获取到这个点的RGB值。

第二种就是使用 OpenCV 提供的 Get1D、 Get2D 等函数。

推荐使用第一种办法吧,毕竟简单。

0x02. 获取行和列像素

有一下四个函数:

  • cv.GetCol(im, 0): 返回第一列的像素
  • cv GetCols(im, 0, 10): 返回前 10 列
  • cv.GetRow(im, 0): 返回第一行
  • cv.GetRows(im, 0, 10): 返回前 10 行

0x03. 批量处理

需要批量处理所有的像素点的时候,只需要使用for循环迭代处理就可以了:

import cv2.cv as cv
 
im = cv.LoadImage("img/lena.jpg")
 
for i in range(im.height):
 for j in range(im.width):
  im[i,j] # 这里可以处理每个像素点

还有一种迭代处理的方式是使用 LineIterator,不过在声明 LineIterator 的时候需要制定处理像素点的开始点和结束点。

import cv2.cv as cv
 
im = cv.LoadImage("img/lena.jpg")
li = cv.InitLineIterator(im, (0, 0), (im.rows, im.cols)) #So loop the entire matrix
 
for (r, g, b) in li:
 # 这里可以对每个像素点的 r g b 进行处理

娱乐一下, 随机获取 5000 个像素点,然后把颜色换成一个随机的值(salt):

import cv2.cv as cv
 
import random
 
# 这里也可以使用 Get2D/Set2D 来加载图片
im = cv.LoadImage("img/lena.jpg") 
 
for k in range(5000): #Create 5000 noisy pixels
 i = random.randint(0,im.height-1)
 j = random.randint(0,im.width-1)
 color = (random.randrange(256),random.randrange(256),random.randrange(256))
 im[i,j] = color
 
cv.ShowImage("Noize", im)
cv.WaitKey(0)

效果图:

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 3.6 性能测试框架Locust安装及使用方法(详解)

Python 3.6 性能测试框架Locust安装及使用方法(详解)

背景 Python3.6 性能测试框架Locust的搭建与使用 基础 python版本:python3.6 开发工具:pycharm Locust的安装与配置 点击“File”→“s...

如何给Python代码进行加密

这篇文章主要介绍了如何给Python代码进行加密,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 去年11月在PyCon China 2...

Python基于opencv实现的简单画板功能示例

Python基于opencv实现的简单画板功能示例

本文实例讲述了Python基于opencv实现的简单画板功能。分享给大家供大家参考,具体如下: import cv2 import numpy as np drawing = Fal...

利用python实现冒泡排序算法实例代码

利用python实现冒泡排序算法实例代码

冒泡排序 冒泡排序(英语:Bubble Sort)是一种简单的排序算法。它重复地遍历要排序的数列,一次比较两个元素,如果他们的顺序错误就把他们交换过来。遍历数列的工作是重复地进行直到没...

Python + OpenCV 实现LBP特征提取的示例代码

Python + OpenCV 实现LBP特征提取的示例代码

背景 看了些许的纹理特征提取的paper,想自己实现其中部分算法,看看特征提取之后的效果是怎样 运行环境 Mac OS Python3.0 Anaconda3(集成了很多包...