基于DataFrame改变列类型的方法

yipeiwu_com6年前Python基础

今天用numpy 的linalg.det()求矩阵的逆的过程中出现了一个错误:

TypeError: No loop matching the specified signature and casting was found for ufunc det 

查了半天发现是数据类型的问题,numpy在算逆的时候会先检查一下数据类型是否一致,若不一致就会报错(话说这个错误提示信息也太难理解了,还得看源码o(╯□╰)o)。

由于我的数据是用pandas.DataFrame读取的,所以每一列的数据类型有可能不同。

回头检查一下数据,果然有的是int,有的是float。所以全部改为float64类型。

找到了如下的方法,以及DataFrame数据类型:

DataFrame 类型转换方法—astype()

import pandas as pd
df = pd.DataFrame([{'col1':'a', 'col2':'1'}, {'col1':'b', 'col2':'2'}])

print df.dtypes

df['col2'] = df['col2'].astype('int')
print '-----------'
print df.dtypes

df['col2'] = df['col2'].astype('float64')
print '-----------'
print df.dtypes

输出:

col1 object
col2 object
dtype: object
-----------
col1 object
col2  int32
dtype: object
-----------
col1  object
col2 float64
dtype: object

astype()也能一次改变所有数据的类型:

In[30]:a
Out[31]: 
   a   b   c   d
0 0.891380 0.442167 -0.539450 1.023458
1 -0.488131 -1.847104 -0.209799 -0.768713
2 1.290434 0.327096 0.358406 0.422209

In[32]:a.astype('int32')
Out[32]: 
 a b c d
0 0 0 0 1
1 0 -1 0 0
2 1 0 0 0

附:data type list

Data type Description
bool_ Boolean (True or False) stored as a byte
int_ Default integer type (same as C long; normally either int64 or int32)
intc Identical to C int (normally int32 or int64)
intp Integer used for indexing (same as C ssize_t; normally either int32 or int64)
int8 Byte (-128 to 127)
int16 Integer (-32768 to 32767)
int32 Integer (-2147483648 to 2147483647)
int64 Integer (-9223372036854775808 to 9223372036854775807)
uint8 Unsigned integer (0 to 255)
uint16 Unsigned integer (0 to 65535)
uint32 Unsigned integer (0 to 4294967295)
uint64 Unsigned integer (0 to 18446744073709551615)
float_ Shorthand for float64.
float16 Half precision float: sign bit, 5 bits exponent, 10 bits mantissa
float32 Single precision float: sign bit, 8 bits exponent, 23 bits mantissa
float64 Double precision float: sign bit, 11 bits exponent, 52 bits mantissa
complex_ Shorthand for complex128.
complex64 Complex number, represented by two 32-bit floats (real and imaginary components)
complex128 Complex number, represented by two 64-bit floats (real and imaginary components)

以上这篇基于DataFrame改变列类型的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PyQt5实现拖放功能

PyQt5实现拖放功能

在这节教程中,我们将探讨PyQt5中的拖放操作。 在计算机图形用户界面(GUI)中,拖放是在某个虚拟对象上点击并拖动到另一个位置或虚拟对象上的操作。它通常用于调用多个动作,或为两个抽象对...

利用Python中的mock库对Python代码进行模拟测试

 如何不靠耐心测试 通常,我们编写的软件会直接与那些我们称之为“肮脏的”服务交互。通俗地说,服务对我们的应用来说是至关重要的,它们之间的交互是我们设计好的,但这会带来我们不希望...

windows 10 设定计划任务自动执行 python 脚本的方法

windows 10 设定计划任务自动执行 python 脚本的方法

我用 python 写了一些脚本,有一些是爬虫脚本,比如爬取知乎特定话题的热门问题,有一些是定期的统计分析脚本,输出统计结果到文档中。之前我都是手动执行这些脚本,现在我希望如何这些脚本能...

通过字符串导入 Python 模块的方法详解

通过字符串导入 Python 模块的方法详解

我们平时导入第三方模块的时候,一般使用的是 import 关键字,例如: import scrapy from scrapy.spider import Spider 但是如果各位...

详解django+django-celery+celery的整合实战

详解django+django-celery+celery的整合实战

本篇文章主要是由于计划使用django写一个计划任务出来,可以定时的轮换值班人员名称或者定时执行脚本等功能,百度无数坑之后,终于可以凑合把这套东西部署上。本人英文不好,英文好或者希望深入...