符合语言习惯的 Python 优雅编程技巧【推荐】

yipeiwu_com6年前Python基础

Python最大的优点之一就是语法简洁,好的代码就像伪代码一样,干净、整洁、一目了然。要写出 Pythonic(优雅的、地道的、整洁的)代码,需要多看多学大牛们写的代码,github 上有很多非常优秀的源代码值得阅读,比如:requests、flask、tornado,下面列举一些常见的Pythonic写法。
0. 程序必须先让人读懂,然后才能让计算机执行。

“Programs must be written for people to read, and only incidentally for machines to execute.”

1. 交换赋值

##不推荐
temp = a
a = b
b = a 
##推荐
a, b = b, a # 先生成一个元组(tuple)对象,然后unpack

2. Unpacking

##不推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name = l[0]
last_name = l[1]
phone_number = l[2] 
##推荐
l = ['David', 'Pythonista', '+1-514-555-1234']
first_name, last_name, phone_number = l
# Python 3 Only
first, *middle, last = another_list

3. 使用操作符in

##不推荐
if fruit == "apple" or fruit == "orange" or fruit == "berry":
  # 多次判断 
##推荐
if fruit in ["apple", "orange", "berry"]:
  # 使用 in 更加简洁

4. 字符串操作

##不推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''
for s in colors:
  result += s # 每次赋值都丢弃以前的字符串对象, 生成一个新对象 
##推荐
colors = ['red', 'blue', 'green', 'yellow']
result = ''.join(colors) # 没有额外的内存分配

5. 字典键值列表

##不推荐
for key in my_dict.keys():
  # my_dict[key] ... 
##推荐
for key in my_dict:
  # my_dict[key] ...
# 只有当循环中需要更改key值的情况下,我们需要使用 my_dict.keys()
# 生成静态的键值列表。

6. 字典键值判断

##不推荐
if my_dict.has_key(key):
  # ...do something with d[key] 
##推荐
if key in my_dict:
  # ...do something with d[key]

7. 字典 get 和 setdefault 方法

##不推荐
navs = {}
for (portfolio, equity, position) in data:
  if portfolio not in navs:
      navs[portfolio] = 0
  navs[portfolio] += position * prices[equity]
##推荐
navs = {}
for (portfolio, equity, position) in data:
  # 使用 get 方法
  navs[portfolio] = navs.get(portfolio, 0) + position * prices[equity]
  # 或者使用 setdefault 方法
  navs.setdefault(portfolio, 0)
  navs[portfolio] += position * prices[equity]

8. 判断真伪

##不推荐
if x == True:
  # ....
if len(items) != 0:
  # ...
if items != []:
  # ... 
##推荐
if x:
  # ....
if items:
  # ...

9. 遍历列表以及索引

##不推荐
items = 'zero one two three'.split()
# method 1
i = 0
for item in items:
  print i, item
  i += 1
# method 2
for i in range(len(items)):
  print i, items[i]
##推荐
items = 'zero one two three'.split()
for i, item in enumerate(items):
  print i, item

10. 列表推导

##不推荐
new_list = []
for item in a_list:
  if condition(item):
    new_list.append(fn(item)) 
##推荐
new_list = [fn(item) for item in a_list if condition(item)]

11. 列表推导-嵌套

##不推荐
for sub_list in nested_list:
  if list_condition(sub_list):
    for item in sub_list:
      if item_condition(item):
        # do something... 
##推荐
gen = (item for sl in nested_list if list_condition(sl) \
      for item in sl if item_condition(item))
for item in gen:
  # do something...

12. 循环嵌套

##不推荐
for x in x_list:
  for y in y_list:
    for z in z_list:
      # do something for x & y 
##推荐
from itertools import product
for x, y, z in product(x_list, y_list, z_list):
  # do something for x, y, z

13. 尽量使用生成器代替列表

##不推荐
def my_range(n):
  i = 0
  result = []
  while i < n:
    result.append(fn(i))
    i += 1
  return result # 返回列表
##推荐
def my_range(n):
  i = 0
  result = []
  while i < n:
    yield fn(i) # 使用生成器代替列表
    i += 1
*尽量用生成器代替列表,除非必须用到列表特有的函数。

14. 中间结果尽量使用imap/ifilter代替map/filter

##不推荐
reduce(rf, filter(ff, map(mf, a_list)))
##推荐
from itertools import ifilter, imap
reduce(rf, ifilter(ff, imap(mf, a_list)))
*lazy evaluation 会带来更高的内存使用效率,特别是当处理大数据操作的时候。

15. 使用any/all函数

##不推荐
found = False
for item in a_list:
  if condition(item):
    found = True
    break
if found:
  # do something if found... 
##推荐
if any(condition(item) for item in a_list):
  # do something if found...

16. 属性(property)

=
##不推荐
class Clock(object):
  def __init__(self):
    self.__hour = 1
  def setHour(self, hour):
    if 25 > hour > 0: self.__hour = hour
    else: raise BadHourException
  def getHour(self):
    return self.__hour
##推荐
class Clock(object):
  def __init__(self):
    self.__hour = 1
  def __setHour(self, hour):
    if 25 > hour > 0: self.__hour = hour
    else: raise BadHourException
  def __getHour(self):
    return self.__hour
  hour = property(__getHour, __setHour)

17. 使用 with 处理文件打开

##不推荐
f = open("some_file.txt")
try:
  data = f.read()
  # 其他文件操作..
finally:
  f.close()
##推荐
with open("some_file.txt") as f:
  data = f.read()
  # 其他文件操作...

18. 使用 with 忽视异常(仅限Python 3)

##不推荐
try:
  os.remove("somefile.txt")
except OSError:
  pass
##推荐
from contextlib import ignored # Python 3 only
with ignored(OSError):
  os.remove("somefile.txt")

19. 使用 with 处理加锁

##不推荐
import threading
lock = threading.Lock()
lock.acquire()
try:
  # 互斥操作...
finally:
  lock.release()
##推荐
import threading
lock = threading.Lock()
with lock:
  # 互斥操作...

20. 参考

1) Idiomatic Python: http://python.net/~goodger/projects/pycon/2007/idiomatic/handout.html
2) PEP 8: Style Guide for Python Code: http://www.python.org/dev/peps/pep-0008/

总结

以上所述是小编给大家介绍的符合语言习惯的 Python 优雅编程技巧 ,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!

相关文章

python数据结构学习之实现线性表的顺序

python数据结构学习之实现线性表的顺序

本文实例为大家分享了python实现线性表顺序的具体代码,供大家参考,具体内容如下 线性表 1.抽象数据类型表示(ADT) 类型名称:线性表 数据对象集:线性表是n(>=0)个元...

python实现数据图表

python实现数据图表

平时压力测试,生成一些数据后分析,直接看 log 不是很直观,前段时间看到公司同事分享了一个绘制图表python 模块 : plotly, 觉得很实用,利用周末时间熟悉下。 plotl...

python常用web框架简单性能测试结果分享(包含django、flask、bottle、tornado)

测了一下django、flask、bottle、tornado 框架本身最简单的性能。对django的性能完全无语了。 django、flask、bottle 均使用gunicorn+g...

Python PyQt4实现QQ抽屉效果

Python PyQt4实现QQ抽屉效果

本文实例为大家分享了Python PyQt4实现QQ抽屉效果展示的具体代码,供大家参考,具体内容如下 先看截图效果: 主要是使用了QT的QTabWidget、QToolBox多页窗口部...

Python Web框架Flask中使用七牛云存储实例

对于小型站点,使用七牛云存储的免费配额已足够为站点提供稳定、快速的存储服务 七牛云存储已有Python SDK,对它进行简单封装后,就可以直接在Flask中使用了,项目代码见GitHub...