pandas的唯一值、值计数以及成员资格的示例

yipeiwu_com6年前Python基础

1、Series唯一值判断

 s = Series([3,3,1,2,4,3,4,6,5,6])
 #判断Series中的值是否重复,False表示重复
 print(s.is_unique)
 #False
 #输出Series中不重复的值,返回值没有排序,返回值的类型为数组
 print(s.unique())
 #[3 1 2 4 6 5]
 print(type(s.unique()))
 #<class 'numpy.ndarray'>
 #统计Series中重复值出现的次数,默认是按出现次数降序排序
 print(s.value_counts())
 '''
 3 3
 6 2
 4 2
 5 1
 2 1
 1 1
 '''
 #按照重复值的大小排序输出频率
 print(s.value_counts(sort=False))
 '''
 1 1
 2 1
 3 3
 4 2
 5 1
 6 2
 '''

2、成员资格判断

a、Series的成员资格

 s = Series([5,5,6,1,1])
 print(s)
 '''
 0 5
 1 5
 2 6
 3 1
 4 1
 '''
 #判断矢量化集合的成员资格,返回一个bool类型的Series
 print(s.isin([5]))
 '''
 0  True
 1  True
 2 False
 3 False
 4 False
 '''
 print(type(s.isin([5])))
 #<class 'pandas.core.series.Series'>
 #通过成员资格方法选取Series中的数据子集
 print(s[s.isin([5])])
 '''
 0 5
 1 5
 '''

b、DataFrame的成员资格

 a = [[3,2,6],[2,1,4],[6,2,5]]
 data = DataFrame(a,index=["a","b","c"],columns=["one","two","three"])
 print(data)
 '''
  one two three
 a 3 2  6
 b 2 1  4
 c 6 2  5
 '''
 #返回一个bool的DataFrame
 print(data.isin([1]))
 '''
   one two three
 a False False False
 b False True False
 c False False False
 '''
 #选取DataFrame中值为1的数,其他的为NaN
 print(data[data.isin([1])])
 '''
  one two three
 a NaN NaN NaN
 b NaN 1.0 NaN
 c NaN NaN NaN
 '''
 #将NaN用0进行填充
 print(data[data.isin([1])].fillna(0))
 '''
  one two three
 a 0.0 0.0 0.0
 b 0.0 1.0 0.0
 c 0.0 0.0 0.0
 '''

以上这篇pandas的唯一值、值计数以及成员资格的示例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 二叉树的层序建立与三种遍历实现详解

Python 二叉树的层序建立与三种遍历实现详解

前言 二叉树(Binary Tree)时数据结构中一个非常重要的结构,其具有。。。。(此处省略好多字)。。。。等的优良特点。 之前在刷LeetCode的时候把有关树的题目全部跳过了,(O...

python3中set(集合)的语法总结分享

介绍 set 顾明思义,就是个集合,集合的元素是唯一的,无序的。一个{ }里面放一些元素就构成了一个集合,set里面可以是多种数据类型(但不能是列表,集合,字典,可以是元组) 集 合 是...

Python中的choice()方法使用详解

choice()方法从一个列表,元组或字符串返回一个随机项。 语法 以下是choice()方法的语法: choice( seq ) 注意:此函数是无法直接访问的,所以我们需要导...

Python分支结构(switch)操作简介

Python当中并无switch语句,本文研究的主要是通过字典实现switch语句的功能,具体如下。 switch语句用于编写多分支结构的程序,类似与if….elif….else语句。...

Tensorflow读取并输出已保存模型的权重数值方式

这篇文章是为了对网络模型的权重输出,可以用来转换成其他框架的模型。 import tensorflow as tf from tensorflow.python import pyw...