利用pandas读取中文数据集的方法

yipeiwu_com6年前Python基础

直接利用numpy读取非数字型的数据集时需要先进行转换,而且python3在处理中文数据方面确实比较蛋疼。最近在学习周志华老师的那本西瓜书,需要没事和一堆西瓜反复较劲,之前进行联系的时候都是利用批量替换先清理一遍数据,不过这样实在是太麻烦了,今天偶然发现可以使用pandas来实现读取中文数据集的功能。

首先分享一下数据集:

编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜 
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是 
2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是 
3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是 
4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是 
5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是 
6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是 
7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是 
8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是 
9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否 
10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否 
11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否 
12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否 
13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否 
14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否 
15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否 
16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否 
17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否 

然后利用pandas将它读进来:

import pandas
d = pandas.read_csv(r"d:\data.csv",sep=",")
print(d)

如果要选取某一行数据,可以使用head方法:

d.head(1)

其中参数是行号。

也可以直接取某一列,如:

d['色泽']

如果要取某一个数据则可以将两种方法结合使用:

d.head(1)['色泽']

以上这篇利用pandas读取中文数据集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python利用matplotlib生成图片背景及图例透明的效果

Python利用matplotlib生成图片背景及图例透明的效果

前言 最近工作中遇到一个需求,在使用matplotlib生成图片,想要背景透明,而且图例部分也显示透明效果,通过查找相关资料找到了大概的设置方法,特此记录,方便自己或者有需要的朋友们参考...

如何在django里上传csv文件并进行入库处理的方法

如何在django里上传csv文件并进行入库处理的方法

运维平台导入数据这一功能实在是太重要了,我敢说在没有建自己的cmdb平台前,大多数公司管理服务器信息肯定是表格,用表格最麻烦的就是有点更新就得每个人发一份,这样大家信息才能统一,很不方便...

Python通过for循环理解迭代器和生成器实例详解

本文实例讲述了Python通过for循环理解迭代器和生成器。分享给大家供大家参考,具体如下: 迭代器 可迭代对象 通过 for…in… 循环依次拿到数据进行使用的过程称为遍历,也叫迭代...

Python实现的tab文件操作类分享

类代码: # -*- coding:gbk -*- import os class TABFILE: def __init__(self, filename, dest_fi...

详解Python中for循环的使用方法

详解Python中for循环的使用方法

 for循环在Python中有遍历所有序列的项目,如列表或一个字符串。 语法: for循环语法如下: for iterating_var in sequence: st...