利用pandas读取中文数据集的方法

yipeiwu_com5年前Python基础

直接利用numpy读取非数字型的数据集时需要先进行转换,而且python3在处理中文数据方面确实比较蛋疼。最近在学习周志华老师的那本西瓜书,需要没事和一堆西瓜反复较劲,之前进行联系的时候都是利用批量替换先清理一遍数据,不过这样实在是太麻烦了,今天偶然发现可以使用pandas来实现读取中文数据集的功能。

首先分享一下数据集:

编号,色泽,根蒂,敲声,纹理,脐部,触感,密度,含糖率,好瓜 
1,青绿,蜷缩,浊响,清晰,凹陷,硬滑,0.697,0.46,是 
2,乌黑,蜷缩,沉闷,清晰,凹陷,硬滑,0.774,0.376,是 
3,乌黑,蜷缩,浊响,清晰,凹陷,硬滑,0.634,0.264,是 
4,青绿,蜷缩,沉闷,清晰,凹陷,硬滑,0.608,0.318,是 
5,浅白,蜷缩,浊响,清晰,凹陷,硬滑,0.556,0.215,是 
6,青绿,稍蜷,浊响,清晰,稍凹,软粘,0.403,0.237,是 
7,乌黑,稍蜷,浊响,稍糊,稍凹,软粘,0.481,0.149,是 
8,乌黑,稍蜷,浊响,清晰,稍凹,硬滑,0.437,0.211,是 
9,乌黑,稍蜷,沉闷,稍糊,稍凹,硬滑,0.666,0.091,否 
10,青绿,硬挺,清脆,清晰,平坦,软粘,0.243,0.267,否 
11,浅白,硬挺,清脆,模糊,平坦,硬滑,0.245,0.057,否 
12,浅白,蜷缩,浊响,模糊,平坦,软粘,0.343,0.099,否 
13,青绿,稍蜷,浊响,稍糊,凹陷,硬滑,0.639,0.161,否 
14,浅白,稍蜷,沉闷,稍糊,凹陷,硬滑,0.657,0.198,否 
15,乌黑,稍蜷,浊响,清晰,稍凹,软粘,0.36,0.37,否 
16,浅白,蜷缩,浊响,模糊,平坦,硬滑,0.593,0.042,否 
17,青绿,蜷缩,沉闷,稍糊,稍凹,硬滑,0.719,0.103,否 

然后利用pandas将它读进来:

import pandas
d = pandas.read_csv(r"d:\data.csv",sep=",")
print(d)

如果要选取某一行数据,可以使用head方法:

d.head(1)

其中参数是行号。

也可以直接取某一列,如:

d['色泽']

如果要取某一个数据则可以将两种方法结合使用:

d.head(1)['色泽']

以上这篇利用pandas读取中文数据集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现基于二叉树存储结构的堆排序算法示例

Python实现基于二叉树存储结构的堆排序算法示例

本文实例讲述了Python实现基于二叉树存储结构的堆排序算法。分享给大家供大家参考,具体如下: 既然用Python实现了二叉树,当然要写点东西练练手。 网络上堆排序的教程很多,但是却几乎...

python网络编程学习笔记(八):XML生成与解析(DOM、ElementTree)

xml.dom篇     DOM是Document Object Model的简称,XML 文档的高级树型表示。该模型并非只针对 Python,而是一种普通...

python实现合并两个排序的链表

剑指offer:合并两个排序的链表,Python实现 题目描述 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则。 吐槽 本来想用递归实现,但是...

浅谈Python程序与C++程序的联合使用

作为Python程序员,应该能够正视Python的优点与缺点。众所周之,Python的运行速度是很慢的,特别是大数据量的运算时,Python会慢得让人难以忍受。对于这种情况,“专业”的解...

Python中用Descriptor实现类级属性(Property)详解

上篇文章简单介绍了python中描述器(Descriptor)的概念和使用,有心的同学估计已经Get√了该技能。本篇文章通过一个Descriptor的使用场景再次给出一个案例,让不了解情...