pandas数据集的端到端处理

yipeiwu_com6年前Python基础

1. 数据集基本信息

df = pd.read_csv()

df.head():前五行;

df.info():

  • rangeindex:行索引;
  • data columns:列索引;
  • dtypes:各个列的类型,
  • 主体部分是各个列值的情况,比如可判断是否存在 NaN 值;

对于非数值型的属性列

  • df[‘some_categorical_columns'].value_counts():取值分布;

df.describe(): 各个列的基本统计信息

  • count
  • mean
  • std
  • min/max
  • 25%, 50%, 75%:分位数

df.hist(bins=50, figsize=(20, 15)):统计直方图;

对 df 的每一列进行展示:

train_prices = pd.DataFrame({'price': train_df.SalePrice, 
    'log(price+1)': np.log1p(train_df.SalePrice)})
 # train_prices 共两列,一列列名为 price,一列列名为 log(price+1)
train_prices.hist()

2. 数据集拆分

def split_train_test(data, test_ratio=.3):
 shuffled_indices = np.random.permutation(len(data))
 test_size = int(len(data)*test_ratio)
 test_indices = shuffled_indices[:test_size]
 train_indices = shuffled_indices[test_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

3. 数据预处理

  • 一键把 categorical 型特征(字符串类型)转化为数值型:
>> df['label'] = pd.Categorical(df['label']).codes
  • 一键把 categorical 型特征(字符串类型)转化为 one-hot 编码:
>> df = pd.get_dummies(df)
  • null 值统计与填充:
>> df.isnull().sum().sort_values(ascending=False).head()
# 填充为 mean 值
>> mean_cols = df.mean()
>> df = df.fillna(mean_cols)
>> df.isnull().sum().sum()
0

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

python 读取DICOM头文件的实例

python 读取DICOM头文件的实例

用dicompyler软件打开dicom图像,头文件如图所示: 当然也可以直接读取: ds = dicom.read_file('H:\Data\data\\21662\\2.16...

Python 3.6 中使用pdfminer解析pdf文件的实现

Python 3.6 中使用pdfminer解析pdf文件的实现

所使用python环境为最新的3.6版本 一、安装pdfminer模块 安装anaconda后,直接可以通过pip安装 pip install pdfminer3k  ...

Python实现的矩阵类实例

本文实例讲述了Python实现的矩阵类。分享给大家供大家参考,具体如下: 科学计算离不开矩阵的运算。当然,python已经有非常好的现成的库:numpy(numpy的简单安装与使用可参考...

在cmder下安装ipython以及环境的搭建

在cmder下安装ipython以及环境的搭建

打开cmder 1.移动到D盘 输入命令:D: 2.创建文件夹 λ mkdir myApp 3.创建python自带的虚拟环境 λ python -m venv...

Python pymongo模块用法示例

本文实例讲述了Python pymongo模块用法。分享给大家供大家参考,具体如下: MongoDB优点 MongoDB是一个为当代web应用而生的noSQL数据库,它有如下优点: 1...