pandas数据集的端到端处理

yipeiwu_com6年前Python基础

1. 数据集基本信息

df = pd.read_csv()

df.head():前五行;

df.info():

  • rangeindex:行索引;
  • data columns:列索引;
  • dtypes:各个列的类型,
  • 主体部分是各个列值的情况,比如可判断是否存在 NaN 值;

对于非数值型的属性列

  • df[‘some_categorical_columns'].value_counts():取值分布;

df.describe(): 各个列的基本统计信息

  • count
  • mean
  • std
  • min/max
  • 25%, 50%, 75%:分位数

df.hist(bins=50, figsize=(20, 15)):统计直方图;

对 df 的每一列进行展示:

train_prices = pd.DataFrame({'price': train_df.SalePrice, 
    'log(price+1)': np.log1p(train_df.SalePrice)})
 # train_prices 共两列,一列列名为 price,一列列名为 log(price+1)
train_prices.hist()

2. 数据集拆分

def split_train_test(data, test_ratio=.3):
 shuffled_indices = np.random.permutation(len(data))
 test_size = int(len(data)*test_ratio)
 test_indices = shuffled_indices[:test_size]
 train_indices = shuffled_indices[test_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

3. 数据预处理

  • 一键把 categorical 型特征(字符串类型)转化为数值型:
>> df['label'] = pd.Categorical(df['label']).codes
  • 一键把 categorical 型特征(字符串类型)转化为 one-hot 编码:
>> df = pd.get_dummies(df)
  • null 值统计与填充:
>> df.isnull().sum().sort_values(ascending=False).head()
# 填充为 mean 值
>> mean_cols = df.mean()
>> df = df.fillna(mean_cols)
>> df.isnull().sum().sum()
0

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

python的faker库用法

faker是一个生成伪造数据的Python第三方库,可以伪造城市,姓名,等等,而且支持中文,需要的时候可以一用。 首先需要:pip install faker In [530]: i...

Python实例分享:快速查找出被挂马的文件

Python实例分享:快速查找出被挂马的文件

思路 需要实现准备一份未受感染的源代码和一份可能受感染的源代码,然后运行以下脚本,就能找出到底哪些文件被挂马了。 其中,主要是根据比对2份文件的md5值来过滤可能被挂马的文件(确切的说应...

python使用urllib2实现发送带cookie的请求

本文实例讲述了python使用urllib2实现发送带cookie的请求。分享给大家供大家参考。具体实现方法如下: import urllib2 opener = urllib2.b...

python在非root权限下的安装方法

以前在使用Python的时候,都是使用root用户安装好的全局python,现在,因为root用户安装的Python版本太低,同时自己没有root权限去对全局Python升级,所以要在非...

对Pytorch中Tensor的各种池化操作解析

AdaptiveAvgPool1d(N) 对一个C*H*W的三维输入Tensor, 池化输出为C*H*N, 即按照H轴逐行对W轴平均池化 >>> a = torch...