pandas数据集的端到端处理

yipeiwu_com6年前Python基础

1. 数据集基本信息

df = pd.read_csv()

df.head():前五行;

df.info():

  • rangeindex:行索引;
  • data columns:列索引;
  • dtypes:各个列的类型,
  • 主体部分是各个列值的情况,比如可判断是否存在 NaN 值;

对于非数值型的属性列

  • df[‘some_categorical_columns'].value_counts():取值分布;

df.describe(): 各个列的基本统计信息

  • count
  • mean
  • std
  • min/max
  • 25%, 50%, 75%:分位数

df.hist(bins=50, figsize=(20, 15)):统计直方图;

对 df 的每一列进行展示:

train_prices = pd.DataFrame({'price': train_df.SalePrice, 
    'log(price+1)': np.log1p(train_df.SalePrice)})
 # train_prices 共两列,一列列名为 price,一列列名为 log(price+1)
train_prices.hist()

2. 数据集拆分

def split_train_test(data, test_ratio=.3):
 shuffled_indices = np.random.permutation(len(data))
 test_size = int(len(data)*test_ratio)
 test_indices = shuffled_indices[:test_size]
 train_indices = shuffled_indices[test_size:]
 return data.iloc[train_indices], data.iloc[test_indices]

3. 数据预处理

  • 一键把 categorical 型特征(字符串类型)转化为数值型:
>> df['label'] = pd.Categorical(df['label']).codes
  • 一键把 categorical 型特征(字符串类型)转化为 one-hot 编码:
>> df = pd.get_dummies(df)
  • null 值统计与填充:
>> df.isnull().sum().sort_values(ascending=False).head()
# 填充为 mean 值
>> mean_cols = df.mean()
>> df = df.fillna(mean_cols)
>> df.isnull().sum().sum()
0

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

ubuntu环境下python虚拟环境的安装过程

一. 虚拟环境搭建 在开发中安装模块的方法: pip install 模块名称 之前我们安装模块都是直接在物理环境下安装,这种安装方法,后面一次安装的会覆盖掉前面一次安装的。那如果一台机...

Python 音频生成器的实现示例

Python 音频生成器的实现示例

使用Python生成不同声音的音频 第一步先去百度AI中注册账号,在控制台中创建语音技术应用,获取AppID,API Key,Secret Key 第二步 引用 from tkin...

解决python明明pip安装成功却找不到包的问题

如下所示: 原因1:版本不对,如用环境变量设置的python3.7路径,那么用的就是3.7的pip.exe安装了包。却用的是2.7的python运行 原因2:名称重复,在当前路径下有与i...

python针对excel的操作技巧

一. openpyxl读 95%的时间使用的是这个模块,目前excel处理的模块,只有这个还在维护 1、workBook workBook=openpyxl.load_workboo...

Django 静态文件配置过程详解

静态文件配置 概述: 静态文件交由Web服务器处理,Django本身不处理静态文件。简单的处理逻辑如下(以nginx为例): URI请求 --> 按照Web服务器里面的配置规...